Introduction, Semantic Networks and the Others

. . .

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

Course Information

Crisp Knowledge Representation

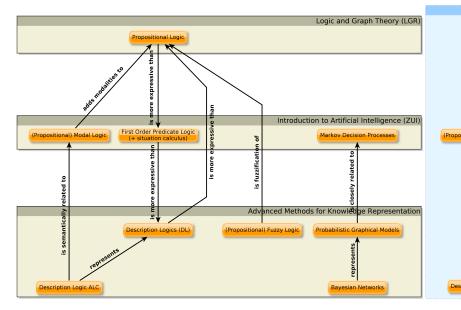
Semantic Networks

Frames

Thesauri

Topic Maps

Conceptual Graphs


Course Information

- web page [currently in czech]: http://cw.felk.cvut.cz/doku.php/courses/a4m33rzn/start
- three basic topics: description logics, probabilistic models, fuzzy logic
- Please go through the course web page carefully !!!

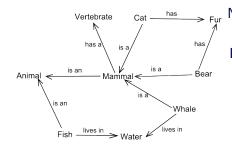
Course Roadmap

Crisp Knowledge Representation

- Let's have the domain of a university. Each stakeholder needs different type of information:
 - Student: "Which bachelor course should I enroll in order to get at least 6 credits ?"
 - Teacher : "How many hours per week am I going to teach this term ?"
 - Dean : "Which courses are popular among students ?"
- Knowledge tries to capture relationships in the domain, so that they can be used for answering various types of queries.
 - "Bachelor courses are courses."
 - "In most cases a course can be opened only if 2 or more students are enrolled."
 - "Every head of a department is a school employee."

Motivation (2)

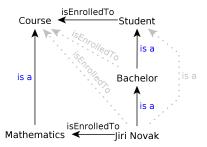
- So, two questions remain ...
 - How to formally represent knowledge ?
 - declaratively × procedurally ? this course will deal with declarative knowledge. např.
 (∀P)(BachelorCourse(P) ⇒ Course(P))
 - without uncertainty (crisp) × with uncertainty this course will cover both, starting **without uncertainty**. např. $(\forall K)(Course(K) \Rightarrow (CourseWithException(K) \lor ((\exists X_1, X_2) IsEnrolledTo(X_1, K) \land IsEnrolledTo(X_2, K) \land X_1 \neq X_2))$
 - How to make use of the knowledge representation ?
 - knowledge management search engines (databases, semantic servers, semantics web)
 - multiagent systems content of messages sent between agents
 - machine learning language bias
 - ... all AI branches


- sémantic networks, frames,
- thesauri, topic maps
- relational databases (relational calculus)
- rule-based systems, Prolog (first-order predicate logics)
- sémantic web, RDF(S), OWL, OWL 2 (description logics)

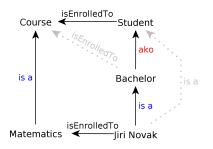
Semantic Networks

Semantic Networks

(©wikipedia.org)


Nodes = entities (individuals, classes),

- $\mathsf{Edges}\,=\,\mathsf{binary}\,\,\mathsf{relations}$
 - The only possible inferrence is *inheritance* by means of **is a** relationship.


Example

Each Cat **has a** Vertebrate, since each Cat **is a** Mammal.

However, this does not allow distinguishing individuals (instances) and groups (classes).

To solve this, a new relationship type "is a kind of" **ako** can be introduced and used for inheritance, while **is a** relationships would be restricted to expressing individual-group relationships.

Semantic Networks (3)

are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

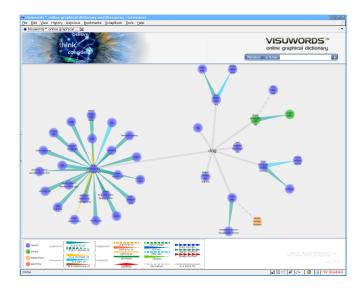
$$\begin{aligned} \text{relation}(X,Y) \wedge \text{ako}(Z,X) &\Rightarrow \text{relation}(Z,Y).\\ \text{isa}(X,Y) \wedge \text{ako}(Y,Z) &\Rightarrow \text{isa}(X,Z).\\ \text{ako}(X,Y) \wedge \text{ako}(Y,Z) &\Rightarrow \text{ako}(X,Z). \end{aligned}$$

- 🔋 no way to express non-monotonous knowledge (like FOL).
- In o easy way to express n-ary relationships (reification needed).
- no way to express binary relationships characteristics transitivity, functionality, reflexivity, etc., or their hierarchies "to be a father means to be a parent", aj.,
- ② no way to express more complex constructs, like cardinality restrictions: "Each person has at most two legs."
- Wordnet, Semantic Wiki, aj.

t

laboratory

Wordnet (http://wordnet.princeton.edu) and MultiWordnet (http://multiwordnet.itc.it) are lexical databases. They are represented as semantic networks extended with a bit more semantics, e.g. :


hyponyms, hypernyms correspond to the **ako** relationship. meronyms, holonyms denote "part-of" relationships between terms.

synonyms, antonyms synonyms are grouped into *synsets* – i.e. sets of terms that build up a single semantic context/meaning (e.g.

 $S_1 = \{\text{man}, \text{adult male}\}, S_2 = \{\text{man}, \text{human being}\})$

Semantic Networks – http://www.visuwords.com/

Frames

 $16 \, / \, 162$

Frames

frame: Škoda Favorit slots:

> is a: car has engine: four-stroke engine has transmission system: manual has carb: value: Jikov default: Pierburg

- more structured than semantic networks
- forms that contain **slots** (binary relationships).

([MvL93])

- Every slot has several **facets** (slot use restrictions), e.g. cardinality, defaults, etc.
- Facets allow non-monotonic reasoning.
- Daemons are triggers for actions perfomed on facets (read, write, delete). Can be used e.g for consistency checking.

Example

Typically, Škoda Favorit **has carb** of type Pierburg, but this particular Škoda Favorit **has carb** of type Jikov.

- frames can be grouped into *scenarios* that represent typical situations, e.g. going into a restaurant. [MvL93]
- OKBC http://www.ai.sri.com/ okbc
- Protégé http://protege.stanford.edu/overview/protege-frames.html
- Apollo http://apollo.open.ac.uk
- Apollo CH http://labe.felk.cvut.cz/ falc/Apollo

Frames (3) - Apollo CH

0	Apollo 0.28.0						
File Edit Options View Help							
	h 🖍 🖍 👘		1	ľ.	t <u>i</u> ŝ	%	
🕵 default	Super-cla	sses	1	S	ots using foo	us	
🧑 🐔 time- and- date	disorder						
闷 🕵 diagnose-and-fix							
general-medical-knowledge							
	A						
			disease-dis				
	Slot	Ту	ve V:	due	Cardinality	Documen	
A 7	description	stri		F		Document	
į general-medical-knowledge 👘 🛔		Parti	.9	1.			
🛛 🛄 drug							
- Cany- Class - Cany - Class - Cany - Class							
0- C disease-disorder							
P C cerebrovascular-disease		4	10100000000000000000		0000000	•	
🗈 🦲 heart-disease	Documentation	C1			00000000000		
🗪 🦲 renal-disease	Documentation	Slots	Relationa				
🗣 🥘 vascular-disease	Sub-classes and instances Classes used by focus						
🗣 💽 medical-condition-disorder	cerebrovascular-disease				ses used by		
🗕 🧧 ace-inhibitors	heart-disease			string			
• 🧧 advanced-hypertensive-retinopathy	renal-disease						
alpha-blockers angiotensin-2-antagonists	vascular-disease						
- C beta-blockers							
- Calcium-antagonists							
Carebrovascular-disease							
Current : general-medical-knowledge	1						
Current's general-medical-knowledge							

Frames (4) - Protégé

	4.4.5				proté
					Apiore
	inces 🛛 🔺 Queries				
LASS BROWSER	CLASS EDITOR				
er Project: 🗢 newspaper	For Class: STANDARD-SLOT (nstance of :STAP	(DARD-CLASS)		A (8)
ass Hierarchy 🛛 🔒 😵 👻 👻	Name		Documentation	Constraints	A X # 4
THING	STANDARD-SLOT				
O SYSTEM-CLASS					
V O :META-CLASS	Role				
🔻 👌 :CLASS					
🔥 :STANDARD-CLASS	Concrete O				
V O SLOT	Template Slots				8.8 × * *
STANDARD-SLOT		Cardinality	-	Other Facets	AP AP 14 days and
SACET	Name ASSOCIATED-FACET	single	Type Instance of FACET	Inverse-slot=ASSOCIATED-SLOT	
CONSTRAINT	DIRECT-DOMAIN	nultiple	Instance of CLASS	inverse-slote DIRECT, TEMP ATE-SLOTS	
ANNOTATION	DIRECT-SUBSLOTS	nultiple	Instance of SLOT	inverse-slot=:DIRECT-SUPERSLOTS	
O :RELATION	DIRECT-SUPERSLOTS	nutiple	Instance of SLOT	inverse-slot=:DIRECT-SUBSLOTS	
O Author	DIRECT-TYPE	multiple	Class with superclass (SLOT	inverse-slot=DIRECT-INSTANCES	
News_Service Columnist	DOCUMENTATION	multiple	String		
Editor	HAME	single	String		
Reporter	SLOT-CONSTRAINTS	multiple	Instance of CONSTRAINT		
o Content	SLOT-DEFAULTS	multiple	Any		
V O Advertisement	SLOT-INVERSE	single	Instance of SLOT	inverse-slot=:SLOT-INVERSE	
Personals.Ad	SLOT-MAXINUM-CARDINALITY	single	Integer	default=1	
Standard_Ad	SLOT-MININUM-CARDINALITY	single	Integer		
Article	SLOT-NUMERIC-MAXIMUM	single	Float		
Library	SLOT-NUMERIC-MINIMUM	single	Float		
A Newroteer	SLOT-VALUE-TYPE	multiple	Any	default=String	
	= SLOT-VALUES	multiple	Any		
- 00					
nardarar É É					
perclasses 0 0					
3001					

- © very simple structures for knowledge representation,
- nonmonotonic reasoning,
- ad-hoc reasoning procedures, that complicates (and broadens ambiguity during) translation to First Order Predicate Logic (FOPL),
- problems querying, debugging.
- ... but semantic networks are basis for other technologies:
 - thesauri
 - topic maps

Thesauri

Thesauri

thesaurus is a taxonomy (hierarchy of terms) enriched with new types of relationships, e.g.: BT/NT (broader/narrower term) = term hierarchy.

Example

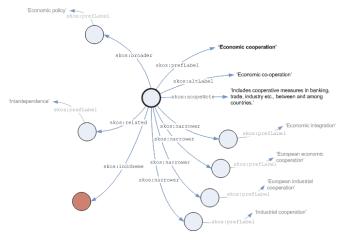
 $\mathsf{beef} \to \mathsf{NT} \to \mathsf{meat}$

SN (scope note) explains meaning of a given term.

Example

 $\mathsf{school} \to \mathsf{SN} \to \mathsf{institution}$ for education

RT (related term) describes general term relationships (excluding BT/NT, USE, ...).


Příklad

topic maps \rightarrow RT \rightarrow knowledge management.

SKOS http://www.w3.org/2004/02/skos

Gerstner

Thesauri – Example

prefix skos: <http://www.w3.org/2004/02/skos/core#>

Thesauri – Summary

- two ISO standards: single-language thesauri (ISO 2788:1986) or multiple-language thesauri (ISO 5964:1985).
- © simple, easy-to-use by non-experts in knowledge engineering
- © problems in formal semantics:

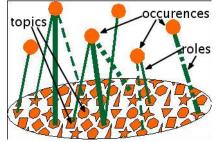
Example

BT relationships can be used in several meanings:

subsumption , e.g. fruit BT apple, instance of , e.g. man BT David, part of , e.g. auto BT wheel.

• semantic search, disambiguation, NLP

Topic Maps

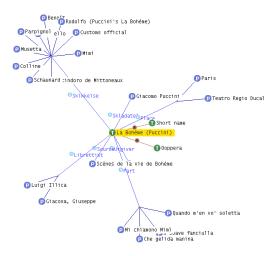


- ISO standard ISO/IEC 13250:2003
- three types of objects : topics, their occurences and mutual associations.
- topics
 - represent concepts classes, instances, properties, etc.
 - topics can have several **topic types**. The relationship "has type" build up a hierarchy of topics (analogy to *isa* relationships in semantics networks, or property *rdf:type* in RDF(S)).
 - each topics can have one or more **names** (e.g. nick, formal name, login name, etc.), each of which in different **variants** (e.g. visualization vs. sorting).

occurences

- represent "links" from topics to real documents/information resources.
- a topic is connected with an occurence by means of a **role**, that determines the occurence type (web page, article, book, etc.)

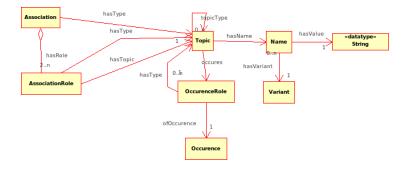
(http://www.ontopia.net/topicmaps/materials/tao.html)



asociations

- represent relationships between topics analogy of n-ary relationships,
- an *association type* (which is a topic) is assigned to an association (topic type is a special association type),
- topics have so called **association roles** when connected to associations,
- each association role is assigned **association role type**, which is a topic, in turn.

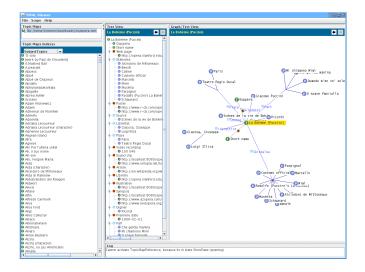
Topic Maps – Example

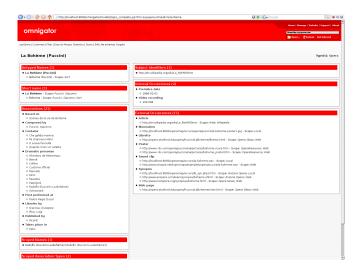


T ... topics

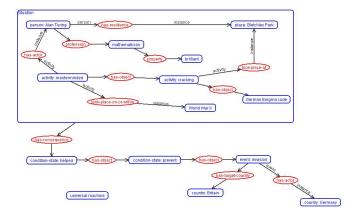
P ... partially expanded topics (except topic types)

R ... associations

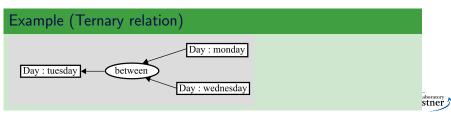

- additionally, topic maps can be grouped into **contexts** (scopes,themes).
- querying using
 - TMQL
 - tolog (syntactically similar to SQL)


- selected tools:
 - Ontopia (Ontopoly, Omnigator, Vizigator) main stakeholder in Topic Maps
 - TM4L
 - TM4J
- Iinks:
 - http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.html
 - http://www.kosek.cz/xml/tmtut/

TM4L Viewer

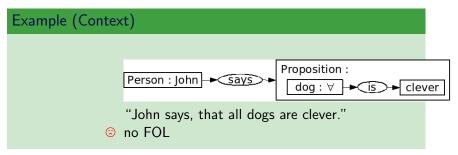


Conceptual Graphs

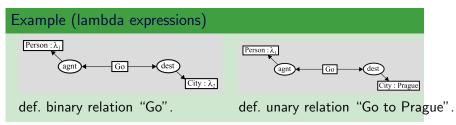

Conceptual Graphs

conceptual graph is a bipartite graph with two types of nodes (1) **concepts** a (2) **relations**.

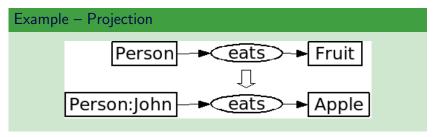
concept has the form **concept type : referent**.



relation = predicate of arbitrary arity > 0.


referent consists of **quantifier** (existential, or defined (universal, collective, etc.)), **designator** (instance identifier, e.g. name) and possibly **descriptor** (conceptual graph describing the concept).

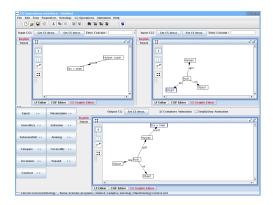
context is a concept with empty descriptor


lambda expressions correspond to "macros" – they allow defining relations by means of a "pattern" of the conceptual graph. Placeholders are denoted by λ_i symbols.

Conceptual Graphs – Inference

- inference makes use of several forward chaining rules¹ (graph generalization, specialization, equivalent changes).
- querying is performed using **projection** that looks for a conceptual graph pattern in another conceptual graph making use of the conceptual type hierarchy and conceptual relations.

¹http://www.jfsowa.com/cg/cgstandw.htm


CharGer – CG editor

(http://sourceforge.net/projects/charger)

- Notio Java library + API for CG manipulation (http://backtrack.uwaterloo.ca/CG/projects/notio)
- - Amine newer version of Prolog+CG (http://amine-platform.sourceforge.net)
 - DNA annotation tool that visualizes the knowledge base using CG

(http://labe.felk.cvut.cz/ uhlir/DNATWeb/DNAThome.html)

- editing/viewing ontologies
- editing/viewing conceptual graphs
- CG operations e.g.: JOIN
- CG+Prolog inference
- multiagent systems

- CG's (J.F. Sowa 80's) are representatives of formal (machine readable) and at the same time well readable, intuitive languages,
- are based on Pierce existential graphs [Sow00], [Dau01],
- are more expressive than FOPL undecidability,
- to keep things decidable, so called *simple graphs* (J.F. Sowa 80's), were defined. They restrict the form of referents and prohibit contexts.

- we only quickly flew through the most important milestones in the crisp knowledge representation during last decades,
- Some most of these approaches have poorly defined semantics, which is a necessary condition for automated processing of large datasets,
- now, let's spend several weeks on formally precise logic-based knowledge representation languages with acceptable computational properties.

