Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

Our plan

Towards Description Logics

 \mathcal{ALC} Language

Towards Description Logics

- What is a term, axiom/formula, theory, model, universal closure, resolution, logical consequence?
- What is an open-world assumption (OWA)/closed-world assumption (CWA)?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable?
- What does it mean, when saying that FOPL is monotonic?
- What is the idea behind Deduction Theorem, Soundness, Completeness?

- What is a term, axiom/formula, theory, model, universal closure, resolution, logical consequence?
- What is an open-world assumption (OWA)/closed-world assumption (CWA)?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable?
- What does it mean, when saying that FOPL is monotonic?
- What is the idea behind Deduction Theorem, Soundness, Completeness?

- What is a term, axiom/formula, theory, model, universal closure, resolution, logical consequence?
- What is an open-world assumption (OWA)/closed-world assumption (CWA)?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable?
- What does it mean, when saying that FOPL is monotonic?
- What is the idea behind Deduction Theorem, Soundness, Completeness?

- What is a term, axiom/formula, theory, model, universal closure, resolution, logical consequence?
- What is an open-world assumption (OWA)/closed-world assumption (CWA)?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable?
- What does it mean, when saying that FOPL is monotonic?
- What is the idea behind Deduction Theorem, Soundness, Completeness?

- What is a term, axiom/formula, theory, model, universal closure, resolution, logical consequence?
- What is an open-world assumption (OWA)/closed-world assumption (CWA)?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable?
- What does it mean, when saying that FOPL is monotonic?
- What is the idea behind Deduction Theorem, Soundness, Completeness?

- What is a term, axiom/formula, theory, model, universal closure, resolution, logical consequence?
- What is an open-world assumption (OWA)/closed-world assumption (CWA)?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable?
- What does it mean, when saying that FOPL is monotonic?
- What is the idea behind Deduction Theorem, Soundness, Completeness?

- Why do we speak about modal logics, description logics, etc.
 ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right?

Well, relational databases are also not enough?

- Why do we speak about modal logics, description logics, etc.
 ?
 - © FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right?

Well, relational databases are also not enough?

- Why do we speak about modal logics, description logics, etc.
 ?
 - © FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CW negation as failure, problems in expressing disjunctive
- Well, relational databases are also not enough?

- Why do we speak about modal logics, description logics, etc.
 ?
 - © FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.
- Well, relational databases are also not enough?

- Why do we speak about modal logics, description logics, etc.
 ?
 - © FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.
- Well, relational databases are also not enough?

- Why do we speak about modal logics, description logics, etc.
 ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.
- Well, relational databases are also not enough?
 - RDBMS accept CWA and support just finite domains.
 - RDBMS are not flexible enough DB model change is complicated that adding/removing an axiom from an ontology

- Why do we speak about modal logics, description logics, etc.
 ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.
- Well, relational databases are also not enough?
 - RDBMS accept CWA and support just finite domains.
 - RDBMS are not flexible enough DB model change is complicated that adding/removing an axiom from an ontology.

- Why do we speak about modal logics, description logics, etc.
 ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.
- Well, relational databases are also not enough?
 - RDBMS accept CWA and support just finite domains.
 - RDBMS are not flexible enough DB model change is complicated that adding/removing an axiom from an ontology.

Semantic networks and Frames

- Lack well defined (declarative) semantics
- What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?

- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?

- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?

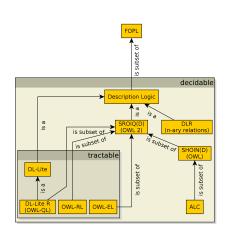
- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?

- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?
 - logic-based languages for modeling terminological knowledge, incomplete knowledge. Almost exclusively, DLs are decidable subsets of FOPL.
 - první jazyky vznikly jako snaha o formalizaci sémantických sítí a rámců. První implementace v 80's – systémy KL-ONE, KAON, Classic .

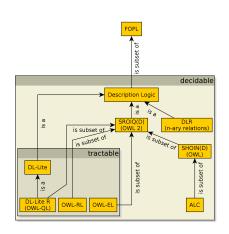
- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?
 - logic-based languages for modeling terminological knowledge, incomplete knowledge. Almost exclusively, DLs are decidable subsets of FOPL.
 - první jazyky vznikly jako snaha o formalizaci sémantických sítí a rámců. První implementace v 80's – systémy KL-ONE, KAON, Classic .

- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?
 - logic-based languages for modeling terminological knowledge, incomplete knowledge. Almost exclusively, DLs are decidable subsets of FOPL.
 - první jazyky vznikly jako snaha o formalizaci sémantických sítí a rámců. První implementace v 80's – systémy KL-ONE, KAON, Classic .

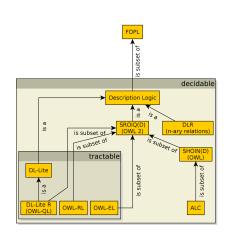
- family of logic-based languages for modeling terminological knowledge, incomplete knowledge.
 Almost exclusively, DLs are decidable subsets of FOPL.
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's ALC
- 2004 SHOIN(D) OWL
- 2009 *SROIQ(D)* OWL 2



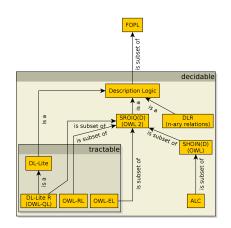
- family of logic-based languages for modeling terminological knowledge, incomplete knowledge.
 Almost exclusively, DLs are decidable subsets of FOPL.
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's ALC
- 2004 SHOIN(D) OWL
- 2009 SROIQ(D) OWL 2



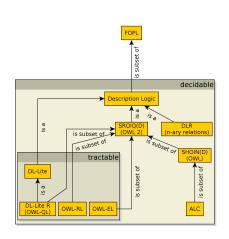
- family of logic-based languages for modeling terminological knowledge, incomplete knowledge.
 Almost exclusively, DLs are decidable subsets of FOPL.
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 SHOIN(D) OWL
- 2009 SROIQ(D) OWL 2



- family of logic-based languages for modeling terminological knowledge, incomplete knowledge.
 Almost exclusively, DLs are decidable subsets of FOPL.
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 $\mathcal{SHOIN}(\mathcal{D})$ OWL



- family of logic-based languages for modeling terminological knowledge, incomplete knowledge.
 Almost exclusively, DLs are decidable subsets of FOPL.
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 SHOIN(D) OWL
- 2009 SROIQ(D) OWL 2



\mathcal{ALC} Language

Basic building blocks of DLs are :

- Theory ${\cal K}$ (in OWL refered as Ontology) of DLs consists of a
 - $(\text{data}), \text{ e.g. } A = \{man(JOHN)\}$
- DLs differ in their expressive power (concept/role constructors, axiom types).

Basic building blocks of DLs are :

```
(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person \sqcap \exists hasChild \cdot Person.
```

```
(atomic) roles - represent (named) binary predicates /
relations, e.g. hasChild
individuals - represent ground terms / individuals, e.g.
JOHN
```

ullet Theory ${\mathcal K}$ (in OWL refered as Ontology) of DLs consists of a

Basic building blocks of DLs are :

ullet Theory ${\mathcal K}$ (in OWL refered as Ontology) of DLs consists of a

Basic building blocks of DLs are :

 Theory K (in OWL referred as Ontology) of DLs consists of a TBOX T - representing axioms generally valid in the domain e g T = IMan □ Person

• Basic building blocks of DLs are :

 \bullet Theory ${\cal K}$ (in OWL refered as Ontology) of DLs consists of a

```
TBOX \mathcal{T} - representing axioms generally valid in the domain, e.g. \mathcal{T} = \{Man \sqsubseteq Person\}
ABOX \mathcal{A} - representing a particular relational structure (data), e.g. \mathcal{A} = \{Man(JOHN)\}
```


Basic building blocks of DLs are :

- Theory $\mathcal K$ (in OWL refered as Ontology) of DLs consists of a TBOX $\mathcal T$ representing axioms generally valid in the domain, e.g. $\mathcal T = \{\mathit{Man} \sqsubseteq \mathit{Person}\}$
 - ABOX A representing a particular relational structure (data), e.g. $A = \{Man(JOHN)\}$
- DLs differ in their expressive power (concept/role constructors, axiom types).

Concepts and Roles

Basic building blocks of DLs are :

```
    (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person.
    (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild individuals - represent ground terms / individuals, e.g. JOHN
```

- Theory \mathcal{K} (in OWL refered as Ontology) of DLs consists of a TBOX \mathcal{T} representing axioms generally valid in the domain, e.g. $\mathcal{T} = \{\mathit{Man} \sqsubseteq \mathit{Person}\}$ ABOX \mathcal{A} representing a particular relational structure (data), e.g. $\mathcal{A} = \{\mathit{Man}(\mathit{JOHN})\}$
- DLs differ in their expressive power (concept/role constructors, axiom types).

Concepts and Roles

Basic building blocks of DLs are :

- Theory \mathcal{K} (in OWL referred as Ontology) of DLs consists of a TBOX \mathcal{T} representing axioms generally valid in the domain, e.g. $\mathcal{T} = \{Man \sqsubseteq Person\}$ ABOX \mathcal{A} representing a particular relational structure (data), e.g. $\mathcal{A} = \{Man(JOHN)\}$
- DLs differ in their expressive power (concept/role constructors, axiom types).

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.
- Having atomic concept A, atomic role R and individual a, ther

$$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$

$$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$

$$a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.
- Having atomic concept A, atomic role R and individual a, ther

$$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$

$$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$

$$a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.
- Having atomic concept A, atomic role R and individual a, then

$$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$

$$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$

$$a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation $\mathcal I$:

concept	${\it concept}^{\cal I}$	description
Т	$oldsymbol{\Delta}^{\mathcal{I}}$	(universal concept)
\perp	Ø	(unsatisfiable concept)
$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$	(negation)
$C \sqcap D$	$\mathcal{C}^\mathcal{I}\cap \mathcal{D}^\mathcal{I}$	(intersection)
$C \sqcup D$	$\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$	(union)
$\forall R \cdot C$	$\{a \mid \forall b ((a,b) \in R^{\mathcal{I}} \Rightarrow b \in C^{\mathcal{I}})\}$	(universal restriction)
$\exists R \cdot C$	$\{a\mid \exists b ((a,b)\in R^{\mathcal{I}}\wedge b\in C^{\mathcal{I}})\}$	(existential restriction)

ТВОХ

ABOX .

Gerstner

³two different individuals denote two different domain∙ek@ments → 🔻 די א בּוֹיים אוויים וויים אוויים וויים אוויים וויים וויים אוויים וויים אוויים וויים וו

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation $\mathcal I$:

	concept	concept $^{\mathcal{I}}$	description
	Т	$\Delta^{\mathcal{I}}$	(universal concept)
	\perp	Ø	(unsatisfiable concept)
	$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$	(negation)
	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$	(intersection)
	$C \sqcup D$	$\mathcal{C}^{\mathcal{I}} \cup \mathcal{D}^{\mathcal{I}}$	(union)
	$\forall R \cdot C$	$\{a \mid \forall b ((a,b) \in R^{\mathcal{I}} \Rightarrow b \in C^{\mathcal{I}})\}$	(universal restriction)
	$\exists R \cdot C$	$\{a\mid \exists b ((a,b)\in R^{\mathcal{I}}\wedge b\in C^{\mathcal{I}})\}$	(existential restriction)
	axiom	$\mathcal{I} \models axiom \; iff \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $	
OX	$C \sqsubseteq D$	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ (inclusion)	
	$C \equiv D$	$C^{\mathcal{I}} = D^{\mathcal{I}}$ (equivalence)	

TBOX

ABOX (UNA = unique name assumption 3)

ALC (= attributive language with complements)

Having concepts ${\it C}$, ${\it D}$, atomic concept ${\it A}$ and atomic role ${\it R}$, then for interpretation ${\it I}$:

	concept	${\it concept}^{\mathcal{I}}$		description
	Т	$\Delta^{\mathcal{I}}$		(universal concept)
	\perp	Ø		(unsatisfiable concept)
	$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$		(negation)
	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$		(intersection)
	$C \sqcup D$	$\mathcal{C}^{\mathcal{I}} \cup \mathcal{D}^{\mathcal{I}}$		(union)
	$\forall R \cdot C$	$\{a \mid \forall b ((a, b))\}$	$\in R^{\mathcal{I}} \Rightarrow b \in C^{\mathcal{I}})$	(universal restriction)
	$\exists R \cdot C$	$\{a\mid \exists b((a,b)\}$	$\in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}})$	(existential restriction)
	axiom	$\mathcal{I} \models axiom \; iff$	description	
TBOX	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$	(inclusion)	
	$C \equiv D$	$C^{\mathcal{I}} = D^{\mathcal{I}}$	(equivalence)	
ABOX	(UNA = u	nique name assur	mption ³)	
	axiom	$\mathcal{I} \models axiom \; iff$	description	
	C(a)	$a^{\mathcal{I}} \in \mathcal{C}^{\mathcal{I}}$	(concept assertion)	
	R(a,b)	$(a^\mathcal{I},b^\mathcal{I})\in R^\mathcal{I}$	(role assertion)	

 $^{^3}$ two different individuals denote two different domain elements \sim 4 \equiv 5

Logical Consequence

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$), then

- $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})
- $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence
- S is consistent, if S has at least one model

Logical Consequence

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$), then

- $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})
- $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence of S, resp. \mathcal{K})
- S is consistent, if S has at least one model

Logical Consequence

For an arbitrary set S of axioms (resp. theory $\mathcal{K}=(\mathcal{T},\mathcal{A})$, where $S=\mathcal{T}\cup\mathcal{A}$), then

- $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})
- $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence of S, resp. \mathcal{K})
- S is consistent, if S has at least one model

\mathcal{ALC} – Example

Example

- How to express a set of persons that have just men as their descendants, if any?
 - Person □ ∀hasChild · Man
- How to define concept GrandParent?
- How does the previous axiom look like in FOPL ?
 - $\forall x \, (\textit{GrandParent}(x) \equiv (\textit{Person}(x) \land \exists y \, (\textit{hasChild}(x, y))) \land \exists z \, (\textit{hasChild}(y, z))))$

\mathcal{ALC} – Example

Example

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man
- How to define concept GrandParent ?
- How does the previous axiom look like in FOPL
 - $\forall x \, (\textit{GrandParent}(x) \equiv (\textit{Person}(x) \land \exists y \, (\textit{hasChild}(x, y))) \land \exists z \, (\textit{hasChild}(x, z))))$

\mathcal{ALC} – Example

Example

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man
- How to define concept *GrandParent* ?
 - GrandParent \equiv Person $\sqcap \exists hasChild \cdot \exists hasChild \cdot \top$
- How does the previous axiom look like in FOPL 7

```
\forall x \, (\textit{GrandParent}(x) \equiv (\textit{Person}(x) \land \exists y \, (\textit{hasChild}(x, y) \land \exists z \, (\textit{hasChild}(y, z)))))
```

ALC – Example

Example

- How to express a set of persons that have just men as their descendants, if any?
 - Person □ ∀hasChild · Man
- How to define concept GrandParent ?
 - GrandParent \equiv Person $\sqcap \exists hasChild \cdot \exists hasChild \cdot \top$
- How does the previous axiom look like in FOPL ?

```
\forall x \, (\textit{GrandParent}(x) \equiv (\textit{Person}(x) \land \exists y \, (\textit{hasChild}(x, y) \\ \land \exists z \, (\textit{hasChild}(y, z)))))
```

ALC – Example

Example

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man
- How to define concept GrandParent ?
 - GrandParent \equiv Person $\sqcap \exists hasChild \cdot \exists hasChild \cdot \top$
- How does the previous axiom look like in FOPL ?

$$\forall x \, (\textit{GrandParent}(x) \equiv (\textit{Person}(x) \land \exists y \, (\textit{hasChild}(x, y) \\ \land \exists z \, (\textit{hasChild}(y, z)))))$$

- Consider an ontology $\mathcal{K}_1 = (\{GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top\}, \{GrandParent(JOHN)\}),$ modelem \mathcal{K}_1 může být např. interpretace \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{L_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - $GrandParent^{L_1} = \{John\}$
 - \bullet $JOHN^{L_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node Jan:

```
Person, Man, GrandParent: John hasChild Person, Man: Phillipe hasChild Person, Man : Martin
```


- Consider an ontology $\mathcal{K}_1 = (\{GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top\}, \{GrandParent(JOHN)\}),$ modelem \mathcal{K}_1 může být např. interpretace \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - a GrandParent $I_1 \{lohn\}$
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in
 - Person, Man, GrandParent: John hasChild Person, Man: Phillipe hasChild Person, Man: Martin

- Consider an ontology $\mathcal{K}_1 = (\{GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top\}, \{GrandParent(JOHN)\}),$ modelem \mathcal{K}_1 může být např. interpretace \mathcal{I}_1 :
 - $\bullet \ \Delta^{\mathcal{I}_1} = \textit{Man}^{\mathcal{I}_1} = \textit{Person}^{\mathcal{I}_1} = \{\textit{John}, \textit{Phillipe}, \textit{Martin}\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - $GrandParent^{L_1} = \{John\}$
 - $JOHN^{L_1} = \{John\}$
 - this model is finite and has the form of a tree with the root in the node Jan:

```
Person, Man, GrandParent: John hasChild Person, Man: Phillipe hasChild Person, Man : Martin
```


- Consider an ontology $\mathcal{K}_1 = (\{GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top\}, \{GrandParent(JOHN)\}),$ modelem \mathcal{K}_1 může být např. interpretace \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - $GrandParent^{\mathcal{I}_1} = \{John\}$
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node Jan:

```
Person, Man, GrandParent: John hasChild Person, Man: Phillipe hasChild Person, Man : Martin
```


- Consider an ontology $\mathcal{K}_1 = (\{GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top\}, \{GrandParent(JOHN)\}),$ modelem \mathcal{K}_1 může být např. interpretace \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - $GrandParent^{\mathcal{I}_1} = \{John\}$
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node Jan:

- Consider an ontology $\mathcal{K}_1 = (\{GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top\}, \{GrandParent(JOHN)\}),$ modelem \mathcal{K}_1 může být např. interpretace \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - $GrandParent^{\mathcal{I}_1} = \{John\}$
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node *Jan*:

The last example revealed several important properties of DL models:

TMP (tree model property), if every satisfiable concept⁴ C of the language has a model in the shape of a *rooted* tree.

FMP (finite model property), if every consistent theory $\mathcal K$ of the language has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

⁴Concept is satisfiable, if at least one model interprets it ass a represent set ら

The last example revealed several important properties of DL models:

TMP (tree model property), if every satisfiable concept⁴ *C* of the language has a model in the shape of a *rooted tree*.

FMP (finite model property), if every consistent theory $\mathcal K$ of the language has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

⁴Concept is satisfiable, if at least one model interprets it as a non-empty set

The last example revealed several important properties of DL models:

TMP (tree model property), if every satisfiable concept⁴ *C* of the language has a model in the shape of a *rooted tree*.

FMP (finite model property), if every consistent theory $\mathcal K$ of the language has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

⁴Concept is satisfiable, if at least one model interprets it as a non-empty set

The last example revealed several important properties of DL models:

TMP (tree model property), if every satisfiable concept⁴ *C* of the language has a model in the shape of a *rooted tree*.

FMP (finite model property), if every consistent theory $\mathcal K$ of the language has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

⁴Concept is satisfiable, if at least one model interprets it as a non-empty set

The last example revealed several important properties of DL models:

TMP (tree model property), if every satisfiable concept⁴ *C* of the language has a model in the shape of a *rooted tree*.

FMP (finite model property), if every consistent theory $\mathcal K$ of the language has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

⁴Concept is satisfiable, if at least one model interprets it as a non-empty set

Example

Example

primitive concept defined concept

```
Woman \equiv Person \sqcap Female
```

 $Man \equiv Person \sqcap \neg Woman$

 $Mother \equiv Woman \sqcap \exists hasChild \cdot Person$

 $Father \equiv Man \sqcap \exists hasChild \cdot Person$

 $Parent \equiv Father \sqcup Mother$

 $Grandmother \equiv Mother \sqcap \exists hasChild \cdot Parent$

 $MotherWithoutDaughter \equiv Mother \sqcap \forall hasChild \cdot \neg Woman$

Wife \equiv Woman $\sqcap \exists hasHusband \cdot Man$

Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; colors distinguish concepts instances – *Patricide* a ¬*Patricide*

Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA)$,

$$JOCASTA \longrightarrow \bullet \longrightarrow \bullet$$

Q2 Find individuals x such that $\mathcal{K} \models \mathcal{C}(x)$, where C is

$$\neg Patricide \sqcap \exists hasChild \vdash \cdot (Patricide \sqcap \exists hasChild \vdash) \cdot \{JOCASTA\}$$

What is the difference, when considering CWA

Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS)

hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild; colors distinguish concepts instances – Patricide a ¬Patricide

$$JOCASTA \longrightarrow \bullet \longrightarrow \bullet$$

Example

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES) ABOX hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) Patricide(OEDIPUS) ¬Patricide(THERSANDROS) Edges represent role assertions of hasChild; colors distinguish concepts instances – Patricide a ¬Patricide **JOCASTA** POLYNEIKES -> THERSANDROS **OFDIPUS** Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA)$, $IOCASTA \longrightarrow \bullet \longrightarrow \bullet$

Example

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES) ABOX hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) Patricide(OEDIPUS) ¬Patricide(THERSANDROS) Edges represent role assertions of hasChild; colors distinguish concepts instances – Patricide a ¬Patricide → POLYNEIKES → THERSANDROS JOCASTA **OFDIPUS** Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA)$, $IOCASTA \longrightarrow \bullet \longrightarrow \bullet$ Q2 Find individuals x such that $\mathcal{K} \models \mathcal{C}(x)$, where C is $\neg Patricide \sqcap \exists hasChild \vdash \cdot (Patricide \sqcap \exists hasChild \vdash) \cdot \{JOCASTA\}$ What is the difference, when considering CWA?

55 / 157