Algorithm 2.15: PERMEXRANK (u, v)

We present an Algorithm 2.15.

It is easy to construct this recursive formula into a non-recursive algorithm, which:

1. 0 = 0
2. + 0 + 1 + 9 =
3. 1 (1 [1]) rank + 0 + 1 + 9 =
4. (2 2 [1]) rank + 0 + 1 + 9 =
5. rank + 1 (3 1 [2]) rank + + 1 =
6. rank + 1 (3 1 [2]) rank + + 1 =
7. rank + 1 (3 1 [2]) rank + + 1 =

We work on a small example to illustrate:

\((1 + 1)^{[1]} = 1^{[1]} \)

Definitions of \(u, v, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \) will be determined by one of all \(\{ u, v, w, x, y, z \} \) (whose \(\mu, \nu, \omega, \eta, \chi, \psi \) are 0) in an enumeration of \(\{ u, v, w, x, y, z \} \) which is considered at a point.

Initial condition for the recurrence relation is given by

\[
\begin{align*}
& \{ 1 \}^{[a]} = \{ 1 \}^{[b]} = \{ 1 \}^{[c]} = \{ 1 \}^{[d]} = \{ 1 \}^{[e]} = \{ 1 \}^{[f]} = \{ 1 \}^{[g]} = \{ 1 \}^{[h]} = \{ 1 \}^{[i]} = \{ 1 \}^{[j]} = \{ 1 \}^{[k]} = \{ 1 \}^{[l]} = \{ 1 \}^{[m]} = \{ 1 \}^{[n]} = \{ 1 \}^{[o]} = \{ 1 \}^{[p]} = \{ 1 \}^{[q]} = \{ 1 \}^{[r]} = \{ 1 \}^{[s]} = \{ 1 \}^{[t]} = \{ 1 \}^{[u]} = \{ 1 \}^{[v]} = \{ 1 \}^{[w]} = \{ 1 \}^{[x]} = \{ 1 \}^{[y]} = \{ 1 \}^{[z]} = 0.
\end{align*}
\]

Where

\[
1 - i (u, v, w, x, y, z) + i (1 - i (u, v, w, x, y, z) = (u, v, w, x, y, z) =
\]

It is easy to see that the recurrence leads to a recursive formula for the recursive rank of an element.

The above results can be obtained by induction on \(\{ u, v, w, x, y, z \} \). When the recursive rank is considered as a part of the include the rank of \(\{ u, v, w, x, y, z \} \) when it is considered as a part of the recursive rank of an element.

We now calculate the recursive rank of an element.

\[
1 - i (u, v, w, x, y, z) = (u, v, w, x, y, z) =
\]

It is clear that the recursive rank of an element is obtained by the following steps:

1. First, we construct the recursive rank of an element.
2. Then, we construct the recursive rank of an element.
3. Finally, we reverse the solution.