ePAL - Text Searching

Radek Mařík
Marko Genyk-Berezovskyj

ČVUT FEL, K13133

November 21, 2012
Outline

1. Basic Automata
2. Non-deterministic Finite Automaton
3. Levenshtein distance
4. Dictionary Automata
Outline

1. Basic Automata
2. Non-deterministic Finite Automaton
3. Levenshtein distance
4. Dictionary Automata
Example 1

Automaton A_1 is given by its transition table. Draw its transition diagram.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Automaton A_2 is given by its transition diagram. Draw its transition table.
Example 3

Make a decision if automaton A_1 accepts the following words

1. $addca$
2. $bbcca$
3. $bbccaba$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Example 4

Make a decision if automaton A_2 accepts the following words

1. $adddca$
2. $bbcca$
3. $bbccaba$
Example 5

Draw a state diagram of an automaton that accepts just all words over alphabet \{0, 1\} which

1. contain subsequence 01,
2. do not contain subsequence 01,
3. contain a single character 1 and an arbitrary number of characters 0,
4. begin and end with symbol 1,
5. represent binary representations of numbers 0, 1, 2, 3, 4, 5, 6, 7 in their all 1-, 2- 3- digits sequences.
Outline

1. Basic Automata

2. Non-deterministic Finite Automaton

3. Levenshtein distance

4. Dictionary Automata
Automaton A_1 is given by its transition table. Determine its equivalent deterministic automaton.

\[
\begin{array}{cccc}
 & a & b & c & d \\
0 & 0, 1 & 2 & 2 & \\
1 & 0, 2 & & & F \\
2 & 1 & 1, 2 & 0, 2 & \\
\end{array}
\]
Example 7

Automaton A_2 is given by its transition table. Determine its equivalent deterministic automaton.
Example 8

Create an NFA over alphabet \(\{a, b, c\} \) that accepts all words both beginning and ending with chain

1. \(abc \),
2. \(acaca \),
Example 9

Create an NFA over alphabet \{a, b, c\} that accepts all words not containing chain

1. \textit{abc},
2. \textit{acaca},
Example 10

Write all words of length at most 5 of a language described by the following regular expression over alphabet \{0, 1\}

1. \((01|0)*0\)
2. \(0(10|0)*\)
Write a regular expression describing a maximum set M of words over alphabet $\{a, b, c\}$ such that

1. each word in M starts and ends with symbol b,
2. each word in M contains just one occurrence of symbol c anywhere in the word,
3. no word in M contains symbol a on an odd position (positions are indexed from 1).
Outline

1. Basic Automata
2. Non-deterministic Finite Automaton
3. Levenshtein distance
4. Dictionary Automata
Example 12

Find all word occurrences in text T having Levenshtein distance at most k from pattern P.

$$T = aacacacbaabbbcbbcacc$$

$$P = abbcba$$

$$k = 2$$
Find all word occurrences in text T having Levenshtein distance at most k from pattern P.

$T = 010011101000010101011100$

$P = 11100$

$k = 2$
Outline

1. Basic Automata
2. Non-deterministic Finite Automaton
3. Levenshtein distance
4. Dictionary Automata
Example 14

Create a DFA over alphabet A that accepts just words from set M over this alphabet.

$$A = \{a, b, c\}$$

$$M = \{a, b, ba, bc, aaa, bab, ccc, abbc, abcc\}$$
Example 15

Create a DFA over alphabet A that accepts just words from set M over this alphabet.

$$A = \{0, 1\}$$

$$M = \{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, 11111\}$$