Robust Short- and Long-Term Visual Tracking Jiri Matas

Center for Machine Perception Department of Cybernetics,

Faculty of Electrical Engineering Czech Technical University,

Prague, Czech Republic

Tracking: Definition - Literature

Surprisingly little is said about tracking in standard textbooks. Limited to optic flow, plus some basic trackers, e.g. Lucas-Kanade.

Definition (0):

[Forsyth and Ponce, Computer Vision: A modern approach, 2003]

"Tracking is the problem of generating an inference about the motion of an object given a sequence of images.

Good solutions of this problem have a variety of applications..."

Optic Flow v. Tracking

- At every pixel, 2D displacement is estimated (dense result)
- Problem 1: occlusion, pixels visible in one image only
 - in the standard formulation, "no" is not an answer
- Problem 2: is the ground truth ever known?
 - performance evaluation problematic (synthetic sequences ..)
- Problem 3: requires regularization (smoothing)
- Problem 4: failure not easy to detect
- Problem 5: historically, very slow

However:

- Recent surge in interest, real-time on GPU, some robustness achieved
- Applications: time-to-contact, ego-motion

Tracking v. Optic Flow, Motion Estimation

Yosemite sequence real flow

2015.04.13 MPV J. Matas: Tracking, TLD

Definition (1a): Tracking

Establishing point-to-point correspondences in consecutive frames of an image sequence

Notes:

- The concept of an "object" in F&P definition disappeared.
- If an algorithm correctly established such correspondences, would that be a perfect tracker?
- tracking = motion estimation?

Definition (1a): Tracking

Establishing point-to-point correspondences in consecutive frames of an image sequence

Notes:

- The concept of an "object" in F&P definition disappeared.
- If an algorithm correctly established such correspondences, would that be a perfect tracker?
- tracking = motion estimation?

Consider this sequence:

Definition (1b): Tracking

Establishing point-to-point correspondences between all pairs frames in an image sequences

• If an algorithm correctly established such correspondences, would that be a perfect tracker?

Definition (1b): Tracking

Establishing point-to-point correspondences between all pairs frames in an image sequences

Notes:

- If an algorithm correctly established such correspondences, would that be a perfect tracker?
- rather full off-line video analysis than tracking ...

A "standard" CV tracking method output

Definition (2): Tracking

Given an initial estimate of its position, locate X in a sequence of images,

Where X may mean:

- A (rectangular) region
- An "interest point" and its neighbourhood
- An "object"

This definition is adopted e.g. in a recent book by Maggio and Cavallaro, *Video Tracking*, 2011

Smeulders T-PAMI13:

Tracking is the analysis of video sequences for the purpose of establishing the location of the target over a sequence of frames (time) starting from the bounding box given in the first frame.

Tracking as Segmentation

J. Fan et al. Closed-Loop Adaptation for Robust Tracking, ECCV 2010

Tracking-Learning-Detection (TLD)

Definition (3): Tracking

Given an initial estimate of the pose and state of X: In all images in a sequence, (in a causal manner)

- 1. estimate the pose and <u>state</u> of X
- 2. (optionally) update the model of X
- Pose: any geometric parameter (position, scale, ...)
- State: appearance, shape/segmentation, visibility, articulations
- Model update: essentially a semi-supervised learning problem
 - a priori information (appearance, shape, dynamics, ...)
 - labeled data ("track this") + unlabeled data = the sequences
- Causal: for estimation at T, use information from time $t \leq T$

A "miracle": Tracking a Transparent Object

video credit: Helmut Grabner

H. Grabner, H. Bischof, On-line boosting and vision, CVPR, 2006.

Tracking the "Invisible"

H. Grabner, J. Matas, L. Gool, P. Cattin, Tracking the invisible: learning where the object might be, CVPR 2010. 2015.04.13 MPV J. Matas: Tracking, TLD 15/45

Definition (4): Tracking

Given an estimate of the pose (and state) of X in "key" images (and a priori information about X),

In all images in a sequence, (in a causal manner):

- 1. estimate the pose and state of X
- 2. (optionally) estimate the state of the scene [e.g. "supporters"]
- 3. (optionally) update the model of X

<u>Out</u>: a sequence of poses (and states), (and/or the learned model of X)

Notes:

- Often, not all parameters of pose/state are of interest, and the state is estimated as a side-effect.
- If model acquisition is the desired output, the pose/state estimation is a side-effect.
- The model may include: relational constraints and dynamics, appearance change as a function as pose and state

Definition (k): Tracking

http://server.cs.ucf.edu/~vision/projects/sali/CrowdTracking/index.html

..... multiple object tracking

Definition (n): Tracking

Cell division. http://www.youtube.com/watch?v=rgLJrvoX_qo

Three rounds of cell division in Drosophila Melanogaster. http://www.youtube.com/watch?v=YFKA647w4Jg

splitting and merging events

Short-term v. Long-term Tracking v. OF

Short-term Trackers:

- primary objective: "where is X?" = precise estimation of pose
- secondary: be fast; don't lose track
- evaluation methodology: frame number where failure occurred
- examples: Lucas Kanade tracker, mean-shift tracker

Long-term Tracker-Detectors:

- primary objective: unsupervised learning of a detector, since every (short-term) tracker fails, sooner or later (disappearance from the field of view, full occlusion)
- avoid the "first failure means lost forever" problem
- close to online-learned detector, but assumes and exploits the fact that a sequence with temporal pose/state dependence is available
- evaluation methodology: precision/recall, false positive/negative rates (i.e. like detectors)
- note: the detector part may help even for short-term tracking problems, provides robustness to fast, unpredictable motions.

Optic Flow, Motion estimation: establish all correspondences a sequence

Tracking: Which methods work?

Tracking: Which methods work?

"The zero-order tracker" ©

Compressive Tracker (ECCV'12). Different runs.

The Flock of Trackers - FOT

The Flock of Trackers

- A n x m grid (say 10x10) of Lucas-Kanade / ZSP trackers
- Tracker initialised on a regular grid
- Robust estimation of global, either "median" direction/scale or RANSAC (up to homography)
- Each tracker has a failure predictor

Two classical Failure Predictors

Normalized Cross-correlation

- Compute normalized crosscorrelation between local tracker patch in time t and t+1
- Sort local trackers according to NCC response
- Filter out bottom 50% (Median)

Forward-Backward¹

- Compute correspondences of local trackers from time t to t+k and t+k to t and measure the k-step error
- Sort local trackers according to the k-step error
- Filter out bottom 50% (Median)

[1] Z. Kalal, K. Mikolajczyk, and J. Matas.

Forward-Backward Error: Automatic Detection of Tracking Failures. ICPR, 2010

Failure Predictor: Neighbourhood Consistency

 For each local tracker i is computed neighbourhood consistency score as follows:

$$S_i^{Nh} = \sum_{j \in N_i} [\|\Delta_j - \Delta_i\|^2 < \varepsilon]$$
, where $[expression] = \begin{cases} 1 & \text{if } expression \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

 N_i is four neighbourhood of local tracker \underline{i} , Δ is displacement and ε is displacement error threshold

- Local trackers with $S_i^{Nh} < \Theta_{Nh}$ are filtered out
- Setting: ε = 0.5px $\Theta_{Nh} = 1$

Failure Predictors: Temporal consistency

- Markov Model predictor (MMp) models local trackers as two states (i.e. inlier, outlier) probabilistic automaton with transition probabilities $p^i(s_{t+1} \mid s_t)$
- MMp estimates the probability of being an inlier for all local trackers ⇒ filter by
 - 1) Static threshold Θ_s
 - 2) Dynamic threshold Θ_r
 - Learning is done incrementally (learns are the transition probabilities between states)
 - Can be extended by "forgetting", which allows faster response to object appearance change

The combined outlier filter Σ

Combining three indicators of failure:

- Local appearance (NCC)
- Neighbourhood consistency (Nh)
 (similar to smoothness assumption used in optic flow estimation)
- Temporal consistency using a Markov Model predictor (MMp)
- Together form very a stronger predictor than the popular forward-backward

Negligible computational cost (less than 10%)

T. Vojir and J. Matas. Robustifying the flock of trackers. CVWW '11,

FoT Error Prediction Bike tight box (ext. viewer)

FoT Error Prediction Bike loose box (ext. viewer)

FoT Error Prediction

The TLD (PN) Long-Term Tracker

The TLD (PN) Long-Term Tracker

includes:

- adaptive tracker(s) (FOT)
- object detector(s)
- P and N event recognizers for unsupervised learning generating (possibly incorrectly) labelled samples
- an (online) supervised method that updates the detector(s)

Operation:

- 1. Train **Detector on** the first patch
- Runs TRACKER and DETECTOR in parallel
- 3. Update the object **DETECTOR** using P-N learning

TLD a.k.a. PN Tracker a.k.a. "The Predator"

Predator: Camera That Learns

Zdenek Kalal, Jiri Matas, Krystian Mikolajczyk University of Surrey, UK Czech Technical University, Czech Republic

Z. Kalal, K.Mikolajczyk, J. Matas: Tracking-Learning-Detection. IEEE T PAMI 34(7): 1409-1422 (2012)

P-event: "Loop"

- exploits temporal structure
- turns drift of adaptive trackers into a
- Assumption:
 If an adaptive tracker fails, it is unlike

• Rule:

Patches from a track starting and end model (black), ie. are validated by the added to the model

Tracker responses

Failure

N-event: Uniqueness Enforcement

- exploits spatial structure
- Assumption:
 Object is unique in a single frame.
- Rule:
 If the tracker is in model, all other detections within the current frame (red) are assumed wrong → prune from the model

The Detector

e m p

- Scanning window
- Randomized forest
- Trees implemented as ferns [Lepetit 2005]
- Real-time training/detection
 20 fps on 320x240 image
- High accuracy, 8 trees of depth
 10
- 2bit Binary Patterns Combined Haar and LBP features
- Tree depth controls complexity & discriminability; currently not adaptive

Summary

"Visual Tracking" may refer to quite different problems:

- Robustness at all levels is the road to reliable performance
- Short-term tackers fail, sooner or later
- You cannot know for sure when making a mistake, but learn from contradictions!
- Long-term tracking includes learning and detection is interleaved and a detector learning plays a key role (might be even the output) is a promising direction.

THANK YOU. Questions, please?