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What is the “Deep Learning” ?

Deep learning
= both the classifiers and the features are learned automatically

classifier
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» Typically not feasible, due to

high dimensionality

Suboptimal, requires expert
knowledge, works in specific
domain only

image label
hand-engineering  classifier

image features label

(e.g. SIFT, SURF, HOG,

or MFCC in audio)

learning classifier
image features
(feature hierarchies)

Deep neural network

label




Deep learning successes m
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= Deep learning methods have been extremely successful recently

— Consistently beating state-of-the-art results in many fields, winning
many challenges by a significant margin

Computer vision:
« Hand writing recognition, Action/activity recognition, Face recognition
« Large-scale image category recognition (ILSVRC’ 2012 challenge)

INRIA/Xerox 33%,
Uni Amsterdam  30%,
Uni Oxford 27%,
Uni Tokyo 26%,
Uni Toronto 16% (deep neural network) [Krizhevsky-NIPS-2012]

Automatic speech recognition:

« TIMIT Phoneme recognition, speaker recognition
Natural Language Processing, Text Analysis:

« IBM Watson



Learning the representation — Sparse coding

= Natural image statistics
— Luckily, there is a redundancy in natural images
— Pixel intensities are not i.i.d. (but highly correlated)

= Sparse coding [Olshausen-1996, Ng-NIPS-2006]
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Sparse coding

Natural Images Learned bases (¢; _ ¢g,): “Edges”

Test example

= M A <

~ (.8 * 36 + 0.3 % by,  +0.5%
[0,0,..00.8,0,..,00.3,0,..,00.5, ..]

=[a,, ..., ag4] (feature representation)

Compact & easily
interpretable



Unsupervised Learning Hierarchies of features m

= Many approaches to unsupervised learning of 6
feature hierarchies

— Sparse Auto-encoders [Bengio-2007]
— Restricted Boltzmann Machines [Hinton-2006]

® These model can be stacked: lower hidden layer is
used as the input for subsequent layers

object models

@—) object _parfcs
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Input Features Output

® The hidden layers are trained to capture higher-
order data correlations.

= Learning the hierarchies and classification can be [Lee-ICML-2009]
implemented by a (Deep) Neural Network



Resemblance to sensory processing in the brain m

* Needless to say that the brain is a neural network 7

de7rtR7CEUS NEURON

~ 2e-11 neurons
~ 1e-14 synapses

axon

/ axon ending

myelin sheath

cell body

* Primary visual cortex V1

— Neurophysiological evidences that primary visual cells are sensmve to
the orientation and frequency (Gabor filter like impulse responses)

— [Hubel-Wiesel-1959] (Nobel Price winners)
« Experiments on cats with electrodes in the brain
= A single learning algorithm hypothesis ?

— “Rewiring” the brain experiment [Sharma-Nature-2000]

« Connecting optical nerve into A1 cortex (a subject was able to solve visual
tasks by using the processing in A1)




(Artificial) Neural Networks

= Neural networks are here for more than 50 years
— Rosenblatt-1956 (perceptron)

<Tw ab—1  y=ssn{x'w)
— Minsky-1969 (xor issue, => skepticism) N "
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Neural Networks

Rumelhart and McClelland — 1986:
— Multi-layer perceptron,

— Back-propagation (supervised training)

 Differentiable activation function
« Stochastic gradient descent

Empirical risk

Qw) = Zl Qi(w),

Update weights:
w = w— aVQ;(w).

What happens if a network is deep?
(it has many layers)
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Compare outputs with
correct answer to get
error signal
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What was wrong with back propagation? m

10

= Local optimization only (needs a good initialization, or re-initialization)
= Prone to over-fitting
— too many parameters to estimate
— too few labeled examples
= Computationally intensive
=> Skepticism: A deep network often performed worse than a shallow one

* However nowadays:

— Weights can be initialized better (Use of unlabeled data, Restricted
Boltzmann Machines)

— Large collections of labeled data available
* ImageNet (14M images, 21k classes, hand-labeled)
— Reducing the number of parameters by weight sharing
« Convolutional layers — [LeCun-1989]
— Fast enough computers (parallel hardware, GPU)
=> Optimism: It works!



Deep convolutional neural networks

= An example for Large Scale Classification Problem:

— Krizhevsky, Sutskever, Hinton: ImageNet classification with deep
convolutional neural networks. NIPS, 2012.

» Recognizes 1000 categories from ImageNet
» Qutperforms state-of-the-art by significant margin (ILSVRC 2012)
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« 5 convolutional layers, 3 fully connected layers
* 60M parameters, trained on 1.2M images (~1000 examples for
each category)
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Deep convolutional neural networks m
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= Additional tricks: “Devil is in the details”

— Rectified linear units instead of standard sigmoid -
flx) = max(0,z) ©

Rra— ) T o0 1 2 3 1

— Convolutional layers followed by max-pooling
« Local maxima selection in overlapping windows (subsampling)
=> dimensionality reduction, shift insensitivity

— Dropout

» Averaging results of many independent models (similar idea as in
Random forests)

* 50% of hidden units are randomly omitted during the training, but
weights are shared in testing time

=> Probably very significant to reduce overfitting

— Data augmentation
» Images are artificially shifted and mirrored (10 times more images)
=> transformation invariance, reduce overfitting



Deep convolutional neural networks m
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® No unsupervised pre-initialization!

— The training is supervised by standard back-propagation

— enough labeled data: 1.2M labeled training images for 1k categories

— Learned filters in the first layer AENSENE=ZSSINZEER

V= RS

=N

* Resemble cells in primary visual cortex

® Training time:
— 5 days on NVIDIA GTX 580, 3GB memory
— 90 cycles through the training set
= Test time (forward step) on GPU
— Implementation by Yangqing Jia, http://caffe.berkeleyvision.org/
— 5 ms/image in a batch mode

— (my experience: 100 ms/image in Matlab, including image
decompression and normalization)



http://caffe.berkeleyvision.org/
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Preliminary experiments 1: Category recognition m
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Implementation by Yangqing Jia, http://caffe.berkeleyvision.org/
— network pre-trained for 1000 categories provided

Which categories are pre-trained?
— 1000 “most popular” (probably mostly populated)
— Typically very fine categories (dog breeds, plants, vehicles...)
— Category “person” (or derived) is missing
— Recognition subjectively surprisingly good...
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http://caffe.berkeleyvision.org/

Preliminary experiments 2: Category retrieval

= 50k randomly selected images from Profimedia dataset
= (Category: Ocean liner




Preliminary experiments 2: Category retrieval

= Category: Restaurant (results out of 50k-random-Profiset)
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Preliminary experiments 2: Category retrieval

= Category: stethoscope (results out of 50k-random-Profiset)




Preliminary experiments 3: Similarity search m
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Indications in the literature that the last hidden layer carry semantics

— Last hidden layer (4096-dim vector), final layer category responses
(1000-dim vector)

— New (unseen) categories can be learned by training (a linear)
classifier on top of the last hidden layer

« Oquab, Bottou, Laptev, Sivic, TR-INRIA, 2013
» Girshick, Dphanue, Darell, Malik, CVPR, 2014

— Responses of the last hidden layer can be used as a compact
global image descriptor

« Semantically similar images should have small Euclidean distance

4096-dim
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Preliminary experiments 3: Similarity search m
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= Qualitative comparison: (20 most similar images to a query image)
1. MUFIN annotation (web demo), http://mufin.fi.muni.cz/annotation/,
[Zezula et al., Similarity Search: The Metric Space Approach.2005.]
* Nearest neighbour search in 20M images of Profimedia

« Standard global image statistics (e.g. color histograms, gradient
histograms, etc.)

2. Caffe NN (last hidden layer response + Euclidean distance),
* Nearest neighbour search in 50k images of Profimedia

MUFIN results


http://mufin.fi.muni.cz/annotation/

Preliminary experiments 3: Similarity search
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Preliminary experiments 3: Similarity search

MUFIN results
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Preliminary experiments 3: Similarity search
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Preliminary experiments 3: Similarity search

MUFIN results
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Preliminary experiments 3: Similarity search

MUFIN results
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Preliminary experiments 3: Similarity search
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Preliminary experiments 3: Similarity search m
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MUFIN results




Preliminary experiments 3: Similarity search
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Preliminary experiments 3: Similarity search

MUFIN results
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Preliminary experiments 3: Similarity search
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Caffe NN results

Preliminary experiments 3: Similarity search
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Preliminary experiments 3: Similarity search

MUFIN results
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General recipe to use deep neural networks m
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= Recipe to use deep neural network to “solve any problem” (by G. Hinton)
— Have a deep net

— If you do not have enough labeled data, pre-train it by unlabeled data;
otherwise do not bother with pre-initialization

— Use rectified linear units instead of standard neurons

— Use dropout to regularize it (you can have many more parameters
than training data)

— If there is a spatial structure in your data, use convolutional layers
— Have fun... ©



Conclusions m

= |t efficiently learns the abstract representation (shared among classes) %
— The network captures semantics...

= Preliminary experiments with Berkley’s toolbox confirm outstanding
performance of the Deep Convolutional Neural Network (recognition,
similarity search)

= Low computational demands (100 ms / image) on GPU including loading,
image normalization, propagation.

= Do we understand enough what is going on?

Human_Abducted by UFO.mp4

https://www.youtube.com/watch?v=ybgjiXfFMah8

Acknowledgement: | borrowed some images from slides of G. Hinton, A. Ng, Y. Le Cun.
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