# A Shallow Introduction into the Deep Machine Learning



Jan Čech

# What is the "Deep Learning" ?



Deep learning

= both the classifiers and the features are learned automatically



#### Deep learning successes



- Deep learning methods have been extremely successful recently
  - Consistently beating state-of-the-art results in many fields, winning many challenges by a significant margin

#### Computer vision:

- Hand writing recognition, Action/activity recognition, Face recognition
- Large-scale image category recognition (ILSVRC' 2012 challenge)

| INRIA/Xerox   | 33%,                                             |
|---------------|--------------------------------------------------|
| Uni Amsterdam | 30%,                                             |
| Uni Oxford    | 27%,                                             |
| Uni Tokyo     | 26%,                                             |
| Uni Toronto   | 16% (deep neural network) [Krizhevsky-NIPS-2012] |

Automatic speech recognition:

TIMIT Phoneme recognition, speaker recognition

Natural Language Processing, Text Analysis:

IBM Watson

#### Learning the representation – Sparse coding

- Natural image statistics
  - Luckily, there is a redundancy in natural images
  - Pixel intensities are not i.i.d. (but highly correlated)
- Sparse coding [Olshausen-1996, Ng-NIPS-2006]

Input images: 
$$x^{(1)}, x^{(2)}, \dots, x^{(m)}$$
;  $(x^{(i)} \in \mathbb{R}^{n imes n})$ 

Learn dictionary of basis functions  $\phi_1, \phi_2, \dots, \phi_k$ ;  $(\phi_j \in \mathbb{R}^{n \times n})$ that  $x \approx \sum_{j=1}^k a_j \phi_j$ ; s.t.  $a_j$  are mostly zero, "sparse"  $\min_{a,\phi} \sum_{i=1}^m \left( \left\| x^{(i)} - \sum_{j=1}^k a_j^{(i)} \phi_j \right\|^2 + \lambda \sum_{j=1}^k |a_j^{(i)}| \right)$ 



# Sparse coding





# **Unsupervised Learning Hierarchies of features**

- Many approaches to unsupervised learning of feature hierarchies
  - Sparse Auto-encoders [Bengio-2007]
  - Restricted Boltzmann Machines [Hinton-2006]
  - These model can be stacked: lower hidden layer is used as the input for subsequent layers



+1

 $h_{1}^{(1)}$ 







- The hidden layers are trained to capture higherorder data correlations.
- Learning the hierarchies and classification can be implemented by a (Deep) Neural Network



# Resemblance to sensory processing in the brain

Needless to say that the brain is a neural network





~ 2e-11 neurons ~ 1e-14 synapses



- Primary visual cortex V1
  - Neurophysiological evidences that primary visual cells are sensitive to the orientation and frequency (Gabor filter like impulse responses)
  - [Hubel-Wiesel-1959] (Nobel Price winners)
    - · Experiments on cats with electrodes in the brain
- A single learning algorithm hypothesis ?
  - "Rewiring" the brain experiment [Sharma-Nature-2000]
    - Connecting optical nerve into A1 cortex (a subject was able to solve visual tasks by using the processing in A1)





р

m

### (Artificial) Neural Networks

- Neural networks are here for more than 50 years
  - Rosenblatt-1956 (perceptron)



Minsky-1969 (xor issue, => skepticism)





#### **Neural Networks**

Rumelhart and McClelland – 1986:

- Multi-layer perceptron,
- Back-propagation (supervised training)
  - Differentiable activation function
  - Stochastic gradient descent







What happens if a network is deep? (it has many layers)

# What was wrong with back propagation?



- Local optimization only (needs a good initialization, or re-initialization)
- Prone to over-fitting
  - too many parameters to estimate
  - too few labeled examples
- Computationally intensive
- => Skepticism: A deep network often performed worse than a shallow one
- However nowadays:
  - Weights can be initialized better (Use of unlabeled data, Restricted Boltzmann Machines)
  - Large collections of labeled data available
    - ImageNet (14M images, 21k classes, hand-labeled)
  - Reducing the number of parameters by weight sharing
    - Convolutional layers [LeCun-1989]
  - Fast enough computers (parallel hardware, GPU)

=> Optimism: It works!

#### Deep convolutional neural networks

- An example for Large Scale Classification Problem:
  - Krizhevsky, Sutskever, Hinton: ImageNet classification with deep convolutional neural networks. NIPS, 2012.
    - Recognizes 1000 categories from ImageNet
    - Outperforms state-of-the-art by significant margin (ILSVRC 2012)

р

11

m



- 5 convolutional layers, 3 fully connected layers
- 60M parameters, trained on 1.2M images (~1000 examples for each category)

# Deep convolutional neural networks

- Additional tricks: "Devil is in the details"
  - Rectified linear units instead of standard sigmoid
    - Convolutional layers followed by max-pooling
      - Local maxima selection in overlapping windows (subsampling)
      - => dimensionality reduction, shift insensitivity
  - Dropout
    - Averaging results of many independent models (similar idea as in Random forests)
    - 50% of hidden units are randomly omitted during the training, but weights are shared in testing time
    - => Probably very significant to reduce overfitting
  - Data augmentation
    - Images are artificially shifted and mirrored (10 times more images)
    - => transformation invariance, reduce overfitting



m

р

12

#### Deep convolutional neural networks

- No unsupervised pre-initialization!
  - The training is supervised by standard back-propagation
  - enough labeled data: 1.2M labeled training images for 1k categories
  - Learned filters in the first layer
    - Resemble cells in primary visual cortex

- Training time:
  - 5 days on NVIDIA GTX 580, 3GB memory
  - 90 cycles through the training set
- Test time (forward step) on GPU
  - Implementation by Yangqing Jia, <a href="http://caffe.berkeleyvision.org/">http://caffe.berkeleyvision.org/</a>
  - 5 ms/image in a batch mode
  - (my experience: 100 ms/image in Matlab, including image decompression and normalization)





# Preliminary experiments 1: Category recognition



- Implementation by Yangqing Jia, <u>http://caffe.berkeleyvision.org/</u>
  - network pre-trained for 1000 categories provided
- Which categories are pre-trained?
  - 1000 "most popular" (probably mostly populated)
  - Typically very fine categories (dog breeds, plants, vehicles...)
  - Category "person" (or derived) is missing
  - Recognition subjectively surprisingly good...





### Preliminary experiments 2: Category retrieval

**m** p

- 50k randomly selected images from Profimedia dataset
- Category: Ocean liner



### Preliminary experiments 2: Category retrieval



Category: Restaurant (results out of 50k-random-Profiset) 



#### Preliminary experiments 2: Category retrieval



Category: stethoscope (results out of 50k-random-Profiset)



- Indications in the literature that the last hidden layer carry semantics
  - Last hidden layer (4096-dim vector), final layer category responses (1000-dim vector)

m p

18

- New (unseen) categories can be learned by training (a linear) classifier on top of the last hidden layer
  - Oquab, Bottou, Laptev, Sivic, TR-INRIA, 2013
  - Girshick, Dphanue, Darell, Malik, CVPR, 2014
- Responses of the last hidden layer can be used as a compact global image descriptor
  - Semantically similar images should have small Euclidean distance





- Qualitative comparison: (20 most similar images to a query image)
  - MUFIN annotation (web demo), <u>http://mufin.fi.muni.cz/annotation/,</u>
    [Zezula et al., *Similarity Search: The Metric Space Approach.*2005.]
    - Nearest neighbour search in 20M images of Profimedia
    - Standard global image statistics (e.g. color histograms, gradient histograms, etc.)
  - 2. Caffe NN (last hidden layer response + Euclidean distance),
    - Nearest neighbour search in 50k images of Profimedia



















3: 6700.79

8: 6969.95

13: 7399.02







7: 6873.84



2: 6177.14



16: 7475.14







18: 7529.46



4: 6720.73

9: 7253.94

14: 7448.54

19: 7539.31



10: 7254.6



15: 7454.2



20: 7570.21



5: 6802.73

24















Ð

mp

28







m

р

















6: 3951.13



11: 3998.15

Caffe NN results



16: 4039.89





2: 3362.93





12: 4012.28



17: 4056.42





8: 3962.82



13: 4026.56









9: 3966.25

14: 4026.59

19: 4073.56

5: 3878.5

10: 3979.92



15: 4037.17



20: 4074.8





General recipe to use deep neural networks



- Recipe to use deep neural network to "solve any problem" (by G. Hinton)
  - Have a deep net
  - If you do not have enough labeled data, pre-train it by unlabeled data; otherwise do not bother with pre-initialization
  - Use rectified linear units instead of standard neurons
  - Use dropout to regularize it (you can have many more parameters than training data)
  - If there is a spatial structure in your data, use convolutional layers
  - Have fun... 🙂

#### Conclusions

- It efficiently learns the abstract representation (shared among classes)
  - The network captures semantics...
- Preliminary experiments with Berkley's toolbox confirm outstanding performance of the Deep Convolutional Neural Network (recognition, similarity search)
- Low computational demands (100 ms / image) on GPU including loading, image normalization, propagation.
- Do we understand enough what is going on?





https://www.youtube.com/watch?v=ybgjXfFMah8

Acknowledgement: I borrowed some images from slides of G. Hinton, A. Ng, Y. Le Cun.

