A Shallow Introduction into the Deep Machine Learning

Jan Čech
What is the “Deep Learning”?

- Deep learning
 = both the classifiers and the features are learned automatically

- Typically not feasible, due to high dimensionality
- Suboptimal, requires expert knowledge, works in specific domain only

Deep neural network

(features hierarchies)
Deep learning successes

- Deep learning methods have been extremely successful recently
 - Consistently beating state-of-the-art results in many fields, winning many challenges by a significant margin

Computer vision:
- Hand writing recognition, Action/activity recognition, Face recognition
- Large-scale image category recognition (ILSVRC’ 2012 challenge)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRIA/Xerox</td>
<td>33%</td>
</tr>
<tr>
<td>Uni Amsterdam</td>
<td>30%</td>
</tr>
<tr>
<td>Uni Oxford</td>
<td>27%</td>
</tr>
<tr>
<td>Uni Tokyo</td>
<td>26%</td>
</tr>
<tr>
<td>Uni Toronto</td>
<td>16% (deep neural network) [Krizhevsky-NIPS-2012]</td>
</tr>
</tbody>
</table>

Automatic speech recognition:
- TIMIT Phoneme recognition, speaker recognition

Natural Language Processing, Text Analysis:
- IBM Watson
Learning the representation – Sparse coding

- Natural image statistics
 - Luckily, there is a redundancy in natural images
 - Pixel intensities are not i.i.d. (but highly correlated)

- Sparse coding [Olshausen-1996, Ng-NIPS-2006]

Input images: \(x^{(1)}, x^{(2)}, \ldots, x^{(m)}; (x^{(i)} \in \mathbb{R}^{n \times n}) \)

Learn dictionary of basis functions \(\phi_1, \phi_2, \ldots, \phi_k; (\phi_j \in \mathbb{R}^{n \times n}) \) that
\[
x \approx \sum_{j=1}^{k} a_j \phi_j; \quad \text{s.t.} \quad a_j \quad \text{are mostly zero, “sparse”}
\]

\[
\min_{a, \phi} \sum_{i=1}^{m} \left(\left\| x^{(i)} - \sum_{j=1}^{k} a_j^{(i)} \phi_j \right\|^2 + \lambda \sum_{j=1}^{k} |a_j^{(i)}| \right)
\]
Sparse coding

Natural Images

Learned bases ($\phi_1, ..., \phi_{64}$): “Edges”

Test example

$$x \approx 0.8 \ast \phi_{36} + 0.3 \ast \phi_{42} + 0.5 \ast \phi_{63}$$

$$[0, 0, ..., 0, 0.8, 0, ..., 0, 0.3, 0, ..., 0, 0.5, ...] = [a_1, ..., a_{64}] \text{ (feature representation)}$$

Compact & easily interpretable
Unsupervised Learning Hierarchies of features

- Many approaches to unsupervised learning of feature hierarchies
 - Sparse Auto-encoders [Bengio-2007]
 - Restricted Boltzmann Machines [Hinton-2006]
- These models can be stacked: lower hidden layer is used as the input for subsequent layers
- The hidden layers are trained to capture higher-order data correlations.
- Learning the hierarchies and classification can be implemented by a (Deep) Neural Network
Resemblance to sensory processing in the brain

- Needless to say that the brain is a neural network

- Primary visual cortex V1
 - Neurophysiological evidences that primary visual cells are sensitive to the orientation and frequency (Gabor filter like impulse responses)
 - [Hubel-Wiesel-1959] (Nobel Price winners)
 - Experiments on cats with electrodes in the brain

- A single learning algorithm hypothesis?
 - “Rewiring” the brain experiment [Sharma-Nature-2000]
 - Connecting optical nerve into A1 cortex (a subject was able to solve visual tasks by using the processing in A1)

![Diagram of a neuron with labels: dendrites, nucleus, axon, axon ending, cell body, myelin sheath.]

~ 2e-11 neurons
~ 1e-14 synapses

![Illustration of the brain with labeled parts: LGN, V1.]

~ 2e-11 neurons
~ 1e-14 synapses
(Artificial) Neural Networks

- Neural networks are here for more than 50 years
 - Rosenblatt-1956 (perceptron)
 - Minsky-1969 (xor issue, => skepticism)
Neural Networks

Rumelhart and McClelland – 1986:
- Multi-layer perceptron,
- Back-propagation (supervised training)
 - Differentiable activation function
 - Stochastic gradient descent

Empirical risk

\[Q(w) = \sum_{i=1}^{n} Q_i(w), \]

Update weights:

\[w := w - \alpha \nabla Q_i(w). \]

What happens if a network is deep?
(it has many layers)
What was wrong with back propagation?

- Local optimization only (needs a good initialization, or re-initialization)
- Prone to over-fitting
 - too many parameters to estimate
 - too few labeled examples
- Computationally intensive

=> Skepticism: A deep network often performed worse than a shallow one

However nowadays:
- Weights can be initialized better (Use of unlabeled data, Restricted Boltzmann Machines)
- Large collections of labeled data available
 - ImageNet (14M images, 21k classes, hand-labeled)
- Reducing the number of parameters by weight sharing
 - Convolutional layers – [LeCun-1989]
- Fast enough computers (parallel hardware, GPU)

=> Optimism: It works!
Deep convolutional neural networks

- An example for Large Scale Classification Problem:
 - Recognizes 1000 categories from ImageNet
 - Outperforms state-of-the-art by significant margin (ILSVRC 2012)

- 5 convolutional layers, 3 fully connected layers
- 60M parameters, trained on 1.2M images (~1000 examples for each category)
Deep convolutional neural networks

- Additional tricks: “Devil is in the details”
 - Rectified linear units instead of standard sigmoid
 \[f(x) = \max(0, x) \]
 - Convolutional layers followed by max-pooling
 • Local maxima selection in overlapping windows (subsampling)
 => dimensionality reduction, shift insensitivity
 - Dropout
 • Averaging results of many independent models (similar idea as in Random forests)
 • 50% of hidden units are randomly omitted during the training, but weights are shared in testing time
 => Probably very significant to reduce overfitting
 - Data augmentation
 • Images are artificially shifted and mirrored (10 times more images)
 => transformation invariance, reduce overfitting
Deep convolutional neural networks

- No unsupervised pre-initialization!
 - The training is supervised by standard back-propagation
 - enough labeled data: 1.2M labeled training images for 1k categories
 - Learned filters in the first layer
 - Resemble cells in primary visual cortex

- Training time:
 - 5 days on NVIDIA GTX 580, 3GB memory
 - 90 cycles through the training set

- Test time (forward step) on GPU
 - 5 ms/image in a batch mode
 - (my experience: 100 ms/image in Matlab, including image decompression and normalization)
Preliminary experiments 1: Category recognition

 - network pre-trained for 1000 categories provided
- Which categories are pre-trained?
 - 1000 “most popular” (probably mostly populated)
 - Typically very fine categories (dog breeds, plants, vehicles…)
 - Category “person” (or derived) is missing
 - Recognition subjectively surprisingly good…
Sensitivity to image rotation
Sensitivity to image blur

[Graph showing sensitivity to image blur for different breeds of dogs, with x-axis representing sigma-blur and y-axis representing score.]
It is not a texture only...

- Tiger, Panthera tigris
- Tiger cat
- Tabby, tabby cat
- Lynx, catamount
- Jaguar, panther; Panthera onca, Felis onca
- Saint Bernard, St Bernard
- Welsh springer spaniel
- Blenheim spaniel
- Irish setter, red setter
- Leonberg
Preliminary experiments 2: Category retrieval

- 50k randomly selected images from Profimedia dataset
- Category: Ocean liner
Preliminary experiments 2: Category retrieval

- Category: Restaurant (results out of 50k-random-Profiset)
Preliminary experiments 2: Category retrieval

- Category: stethoscope (results out of 50k-random-Profiset)
Preliminary experiments 3: Similarity search

- Indications in the literature that the last hidden layer carry semantics
 - Last hidden layer (4096-dim vector), final layer category responses (1000-dim vector)
 - New (unseen) categories can be learned by training (a linear) classifier on top of the last hidden layer
 - Oquab, Bottou, Laptev, Sivic, TR-INRIA, 2013
 - Girshick, Dphanue, Darell, Malik, CVPR, 2014
 - Responses of the last hidden layer can be used as a compact global image descriptor
 - Semantically similar images should have small Euclidean distance
Preliminary experiments 3: Similarity search

- Qualitative comparison: (20 most similar images to a query image)
 - Nearest neighbour search in 20M images of Profimedia
 - Standard global image statistics (e.g. color histograms, gradient histograms, etc.)
 2. Caffe NN (last hidden layer response + Euclidean distance),
 - Nearest neighbour search in 50k images of Profimedia

MUFIN results
Preliminary experiments 3: Similarity search

Caffe NN results
Preliminary experiments 3: Similarity search

MUFIN results
Preliminary experiments 3: Similarity search

Caffe NN results

1: 0

2: 2131.81

3: 2383.91

4: 2609.95

5: 2624.66

6: 2676.67

7: 2713.51

8: 2771.19

9: 2775.77

10: 2790.22

11: 2853.21

12: 2887.67

13: 2909.2

14: 2938.18

15: 3054.01

16: 3065.6

17: 3079.88

18: 3086.55

19: 3104.52

20: 3111.01
Preliminary experiments 3: Similarity search

MUFIN results
Preliminary experiments 3: Similarity search
Preliminary experiments 3: Similarity search

MUFIN results
Preliminary experiments 3: Similarity search
Preliminary experiments 3: Similarity search

MUFIN results
Preliminary experiments 3: Similarity search

Caffe NN results
Preliminary experiments 3: Similarity search

MUFIN results
Preliminary experiments 3: Similarity search

Caffe NN results
Preliminary experiments 3: Similarity search

MUFIN results
Preliminary experiments 3: Similarity search

Caffe NN results
Preliminary experiments 3: Similarity search

MUFIN results
Preliminary experiments 3: Similarity search

Caffe NN results
Multiple object classes
Multiple object classes
Object detection: Deep Nets and Sliding Windows

- An image of a scene contains multiple objects
- Exhaustive sliding window detector prohibitively slow

=> Category independent region proposals:
 - Objectness [Alexe-TPAMI-2012]
 - Selective search [Uijlings-IJCV-2013]
 - Edgeboxes [Zitnick-ECCV-2014]
General recipe to use deep neural networks

- Recipe to use deep neural network to “solve any problem” (by G. Hinton)
 - Have a deep net
 - If you do not have enough labeled data, pre-train it by unlabeled data; otherwise do not bother with pre-initialization
 - Use rectified linear units instead of standard neurons
 - Use dropout to regularize it (you can have many more parameters than training data)
 - If there is a spatial structure in your data, use convolutional layers
 - Have fun… 😊
Conclusions

- It efficiently learns the abstract representation (shared among classes)
 - The network captures semantics…
- Preliminary experiments with Berkley’s toolbox confirm outstanding performance of the Deep Convolutional Neural Network (recognition, similarity search)
- Low computational demands (100 ms / image) on GPU including loading, image normalization, propagation.
- NNs are (again) in the “Golden Age” (or witnessing a bubble), as many practical problems seem solvable in near future
- Explosion of interest of DNN in literature, graduates get incredible offers, start-ups appear all the time

- Do we understand enough what is going on?
 http://www.youtube.com/watch?v=ybgjXfFMah8

Acknowledgement: I borrowed some images from slides of G. Hinton, A. Ng, Y. Le Cun.