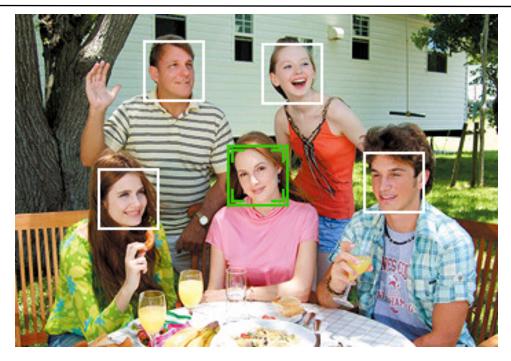


Viola-Jones Type Face Detection

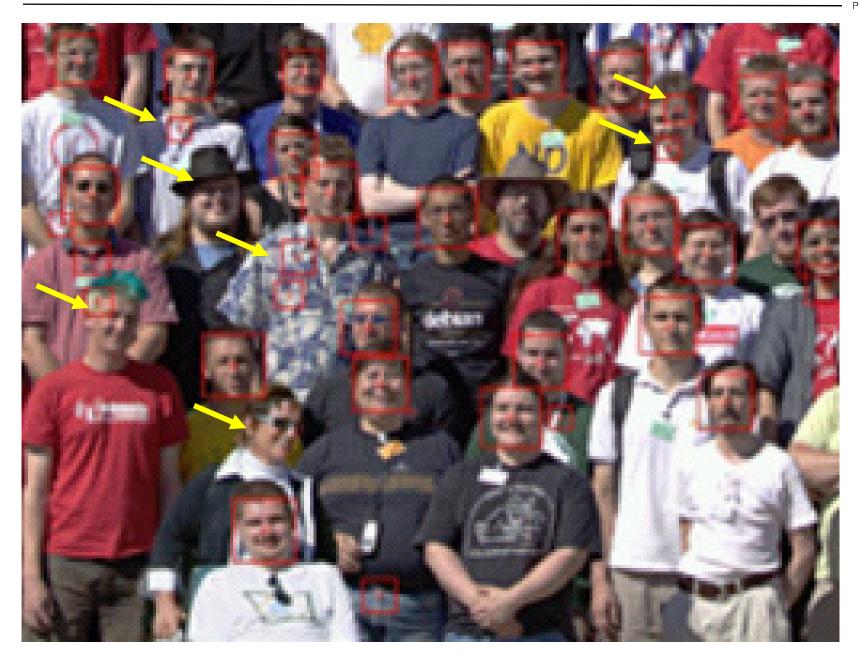


lecturer: Jiří Matas, matas@cmp.felk.cvut.cz

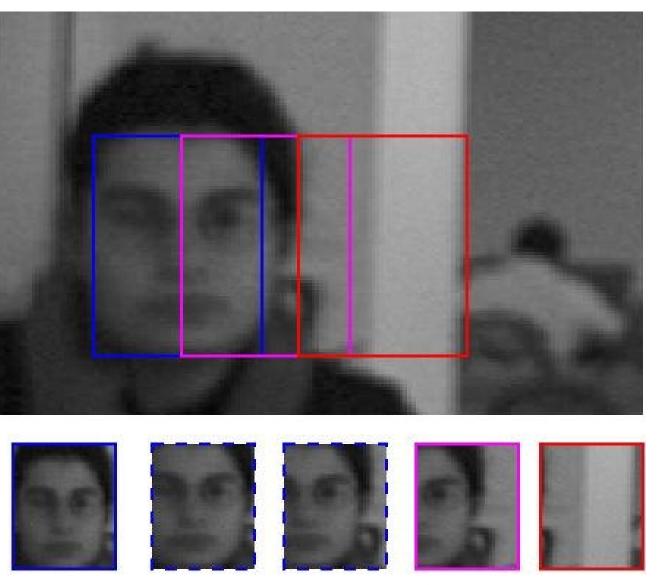
authors: Jiří Matas, Ondřej Drbohlav

Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 16/May/2016 Last update: 15/May/2016

The task in not simple



What is/is not a face?



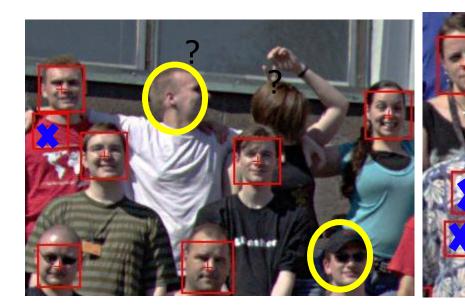
face = 1 face = ? face = ? face = ? face = 0

Typically,

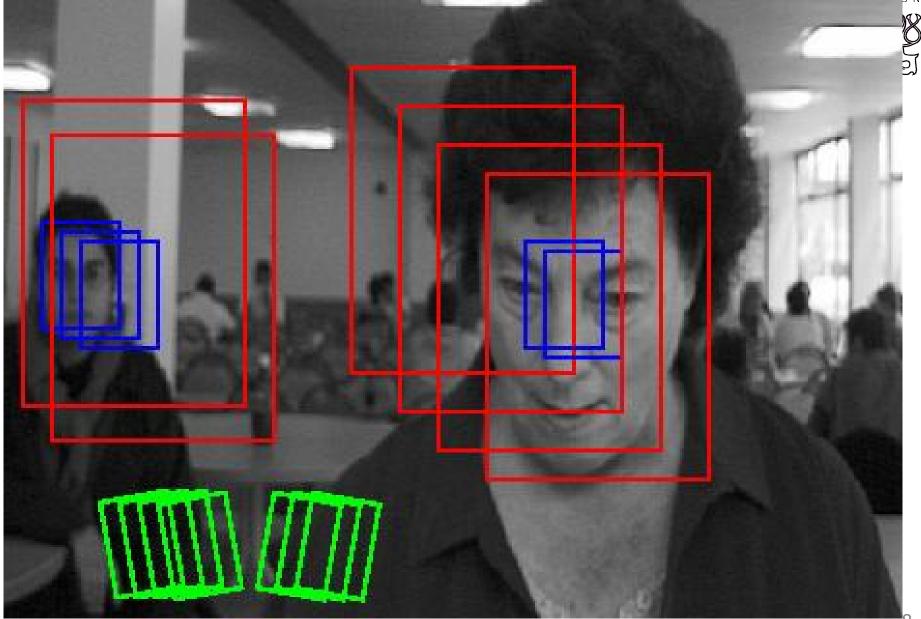
- The user supplies L_o rectangular sub-windows with faces and L_n rectangular sub-windows with non-faces
- The task of the detection system is to output a tight rectangular bounding box (BB) around the detected face
- The BB is considered a good detection when:
 - Eyes, mouth are inside the BB (= face inside BB)
 - Between-eye distance is bigger than 0.5 x larger side of BB (= BB is tight)

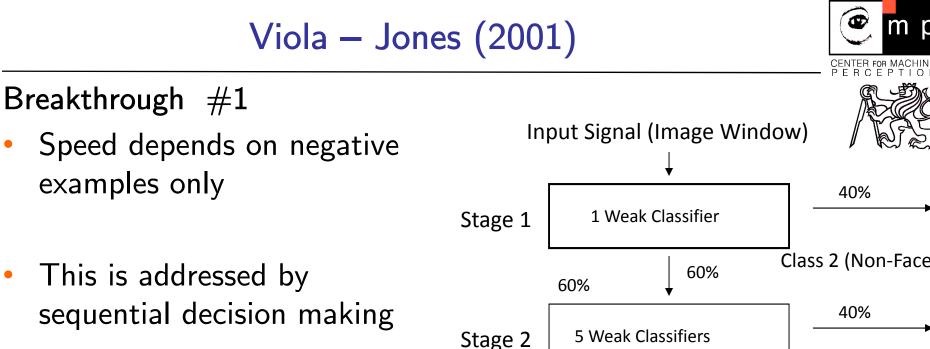
Errors

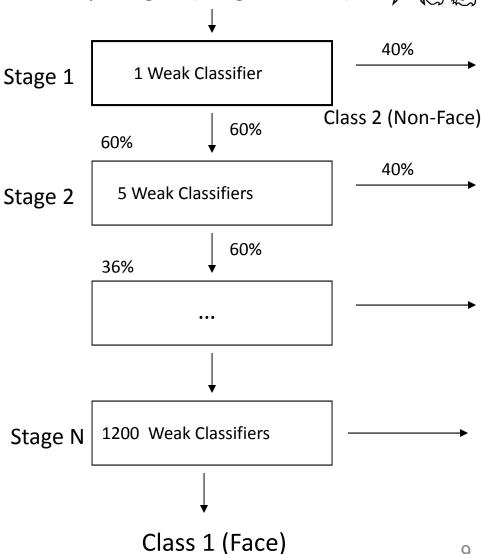
- 1. false negative
- 2. false positives
- 3. localization
- Problems:
- where is the border between 1. + 2. and 3.?



Viola and Jones Suggested a Brute-Force Search







This is addressed by sequential decision making

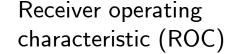
examples only

m p

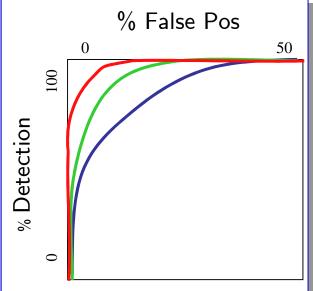
Viola – Jones (2001)

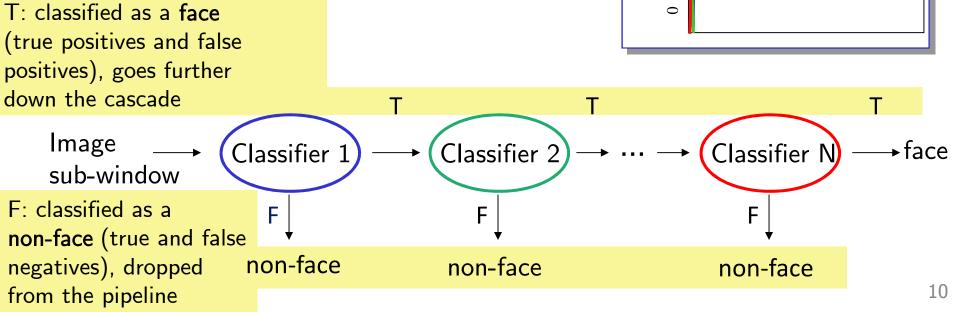
Breakthrough #2 - bootstrap

Classifiers further down the cascade are trained on samples which had **not** been already discarded by previous classifiers (by being classified as a non-face). Their training set is thus **harder** but orders of magnitude **smaller** than training set faced by preceding classifiers. The classifiers thus can be designed to be increasingly **more complex**.



m p





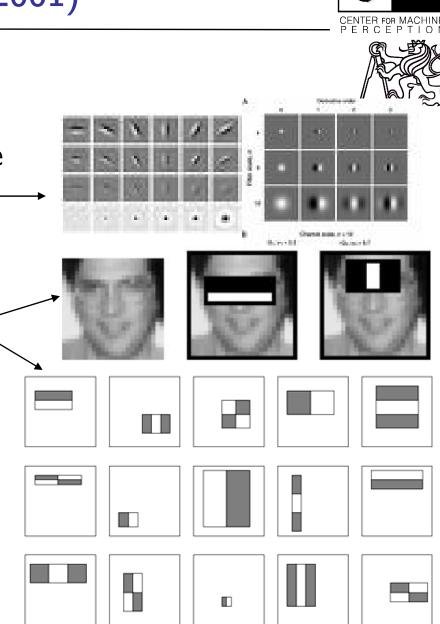
CENTER FOR MACHINE

Viola – Jones (2001)

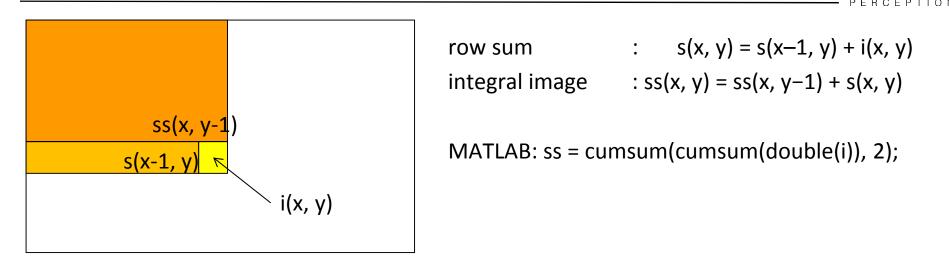
Breakthrough #3: Fast features

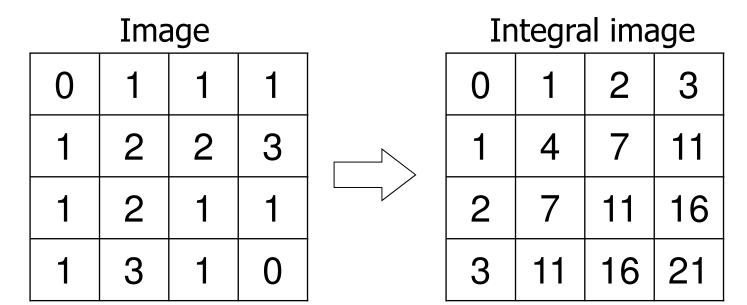
- Gabor filters had been commonly used as features of choice; they are nice but expensive to compute.
- Viola Jones have approximated Gabors by piecewise constant < functions - Haar wavelets.
 Example:

$$\psi(t) = \begin{cases} 1 & \text{for} & 0 \le t < 0.5 \\ -1 & \text{for} & 0.5 \le t < 1 \\ 0 & \text{otherwise} \end{cases}$$



Fast Calculation of Haar Wavelets



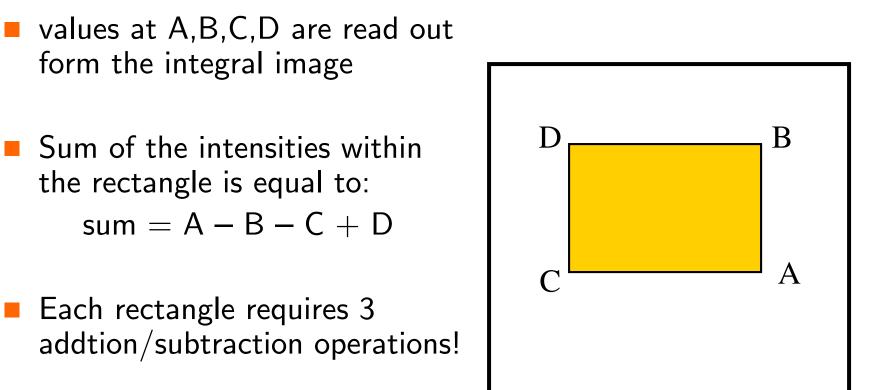


Ø

CENTER FOR MACHIN

m p

Fast Calculation of Haar Wavelets



Breakthrough #4

- VJ have employed AdaBoost (Schapire a Freund, 1997) which both trains the classifier and selects the features
- Pros of Adaboost:
 - Well understood
 - Good detection rate (in many applications)
 - Easy to implement ("just 10 lines of code" [R. Schapire])

AdaBoost: Algorithm

Input: $(x_1, y_1), \ldots, (x_L, y_L)$, where $x_i \in \mathcal{X}$ and $y_i \in \{-1, +1\}$ Initialize weights $D_1(i) = 1/L$.

For t = 1, ..., T:

Update

• Find
$$h_t = \arg\min_{h \in \mathcal{B}} \epsilon_t; \quad \epsilon_t = \sum_{i=1}^L D_t(i) \llbracket y_i \neq h(x_i) \rrbracket \qquad (WeakLearn)$$

$$\llbracket \operatorname{true} \rrbracket \stackrel{\text{def}}{=} 1, \ \llbracket \operatorname{false} \rrbracket \stackrel{\text{def}}{=} 0$$

• If
$$\epsilon_t \geq 1/2$$
 then stop

• Set $\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

Weights of incorrectly classified training examples are increased such that the next classifier puts more focus on these.

$$D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_t}, \qquad Z_t = \sum_{i=1}^L D_t(i)e^{-\alpha_t y_i h_t(x_i)},$$

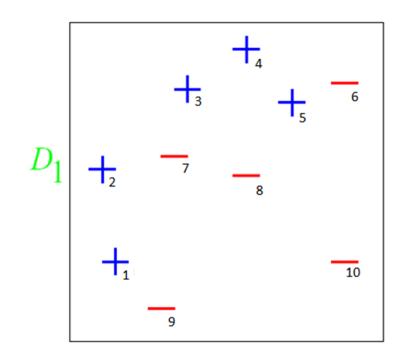
where Z_t is a normalization factor chosen so that D_{t+1} is a distribution.

Output the final classifier:

$$H(x) = \operatorname{sign}(f(x)), \quad f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

AdaBoost – Example 1

Data	1	2	3	4	5	6	7	8	9	10
Class	+	+	+	+	+	-	-	-	-	-
<i>D</i> ₁	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1



Taken from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

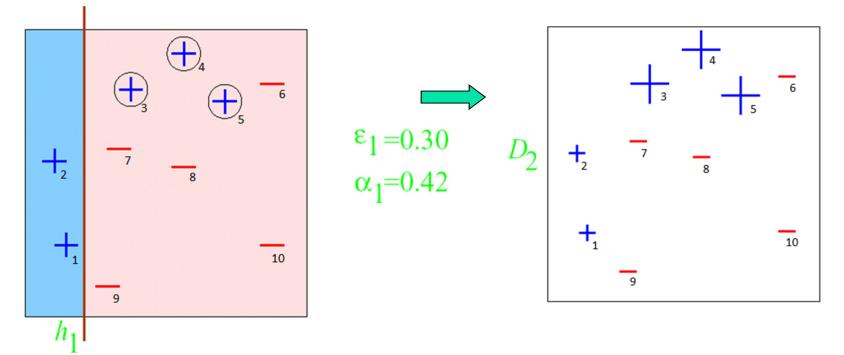
Example 1 -Iteration 1

Data	1	2	3	4	5	6	7	8	9	10
Class	+	+	+	+	+	-	-	_	-	-
$D_2 \cdot Z_2$	0.07	0.07	0.15	0.15	0.15	0.07	0.07	0.07	0.07	0.07

 $Z_2 = 0.92$

 ϵ_1 ... error

- $D_2 \approx D_1 \sqrt{\epsilon_1/(1-\epsilon_1)}$ for corr. class.
- $\alpha_1 = 1/2 \log(1 \epsilon_1)/\epsilon_1 \ D_2 \approx D_1 \sqrt{(1 \epsilon_1)/\epsilon_1}$ for wrongly class.



Example 1 – Iteration 2

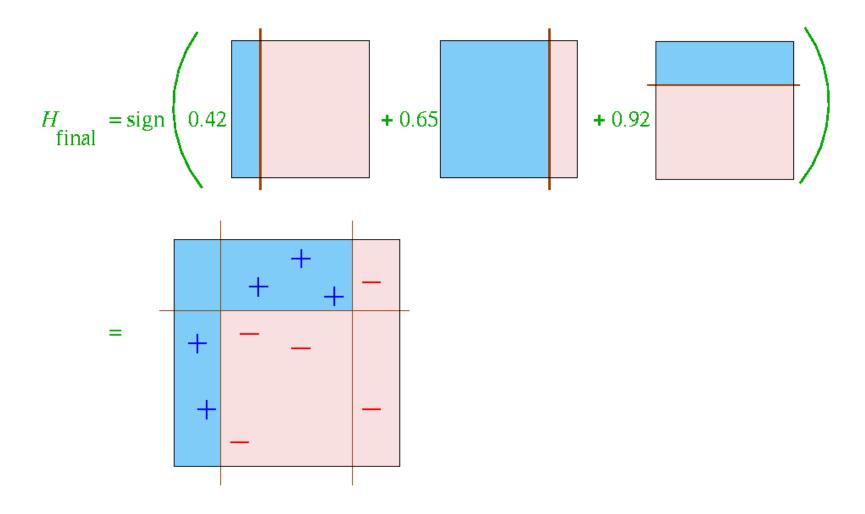
										FENCEFII
Data	1	2	3	4	5	6	7	8	9	10
Class	+	+	+	+	+	-	-	-	-	-
$D_3 \cdot Z_3$	0.04	0.04	0.09	0.09	0.09	0.04	0.14	0.14	0.14	0.04
$Z_3 = 0.82$										
ϵ_2 .	error	^		D	$D_3 \approx D$	$2\sqrt{\epsilon_2}/$	(1 - 0)	ϵ_2) for	corr. (class.
α_2 =	= 1/2	log(1	$-\epsilon_2$)	$/\epsilon_2 D$	$D_3 \approx D$	$2\sqrt{(1-1)^2}$	$-\epsilon_2)/$	$\overline{\epsilon_2}$ for	wrong	gly clas
-					0	- • •				
	+	4	6			<u> </u>				
	3	5		$\epsilon_2 = 0$.21			3	+ <u></u>	
+_2	(—), (⊖		$\epsilon_2 = 0$ $\alpha_2 = 0$.65	<i>D</i> ₃	+2	78		
		Ŭ		2						
+1	\sim		10				+1		10	
	⊖,						9	9		
		h_2 I								

Ø m p CENTER FOR MACHINE P E R C E P T I O N

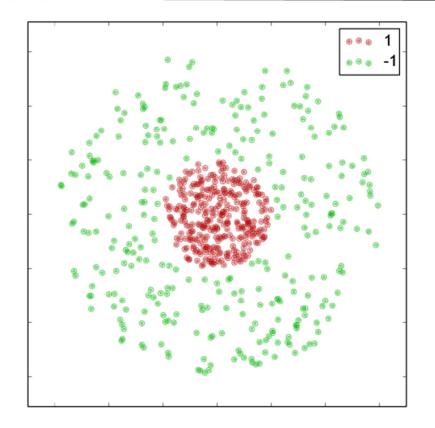
Example 1 – Iteration 3

											101
Data	1	2	3	4	5	6	7	8	9	10]
Class	+	+	+	+	+	_	_	_	_	-	
$D_4 \cdot Z_4$	0.11	0.11	0.04	0.04	0.04	0.11	0.07	0.07	0.07	0.02	
$Z_4 = 0.68$ $\epsilon_3 \dots \text{ error}$ $D_4 \approx D_3 \sqrt{\epsilon_3/(1 - \epsilon_3)}$ for corr. class.											
ϵ_3	. error			D_{i}	$_4 \approx D_3$	$_{3}\sqrt{\epsilon_{3}}/$	$(1 - e^{-1})$	ϵ_3) for	corr. (class.	
$\alpha_3 =$	= 1/2	log(1	$-\epsilon_3)/$	$\epsilon_3 D$	$_{4} \approx D_{2}$	$\sqrt{(1 - 1)^2}$	$-\epsilon_3)/$	$\overline{\epsilon_3}$ for	wron	gly cla	SS
					т ,		577	5			
	+	+4	6	_		6	h	+	+4	Θ_6	
	+3	+5	6		3 -	5	h ₃	13	$+_{5}$	0	
+2	7.	8		+2	78		⊕ ₂	7	8		
		_		+1		_		``		_	
1	9		10	-1 -		10	Œ	9		10	
	9			9							
									0.14		
								$\alpha_3 =$	0.92		19

Example 1 – Final Classifier after Iter. 3



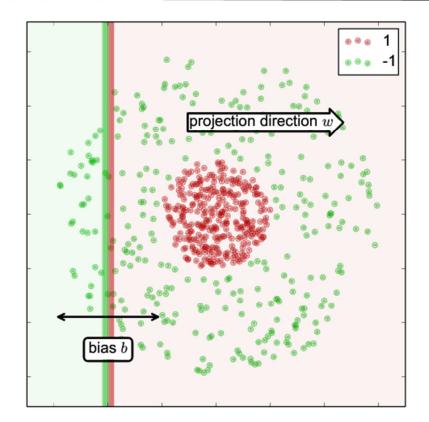
AdaBoost – Example 2



Dataset: $(x_1, y_1), \ldots, (x_L, y_L)$, where $x_i \in \mathcal{X}$ and $y_i \in \{-1, +1\}$.

The two class distributions do not overlap (Bayes error is 0). The class distributions are not known to AdaBoost.

Example 2, Weak Classifier



Dataset: $(x_1, y_1), \ldots, (x_L, y_L)$, where $x_i \in \mathcal{X}$ and $y_i \in \{-1, +1\}$.

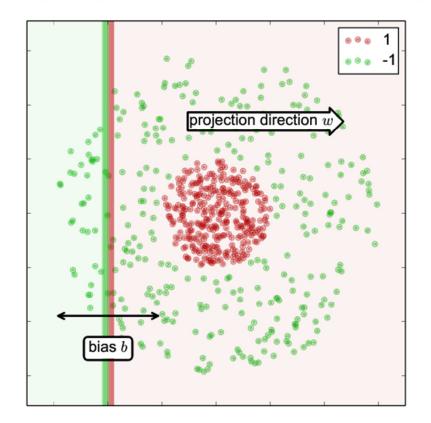
The two class distributions do not overlap (Bayes error is 0). The class distributions are not known to AdaBoost.

Weak classifier: a linear classifier

$$h_{w,b}(x) = \operatorname{sign}(w \cdot x + b),$$

where \boldsymbol{w} is the projection direction vector and \boldsymbol{b} is the bias.

Example 2, Weak Classifier Set



Dataset: $(x_1, y_1), \ldots, (x_L, y_L)$, where $x_i \in \mathcal{X}$ and $y_i \in \{-1, +1\}$.

The two class distributions do not overlap (Bayes error is 0). The class distributions are not known to AdaBoost.

Weak classifier: a linear classifier

 $h_{w,b}(x) = \operatorname{sign}(w \cdot x + b),$

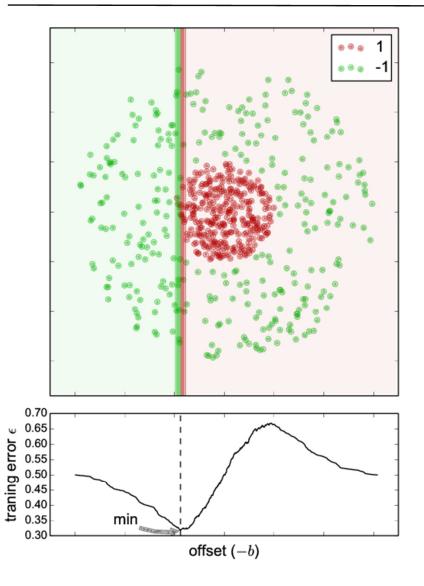
where \boldsymbol{w} is the projection direction vector and \boldsymbol{b} is the bias.

Weak classifier set \mathcal{B} :

 $\{h_{w,b} \mid w \in \{w_1, w_2, ..., w_N\}, b \in \mathbb{R}\}$

N is the number of projection directions used

Example 2, Weak Classifier Set



Dataset: $(x_1, y_1), \ldots, (x_L, y_L)$, where $x_i \in \mathcal{X}$ and $y_i \in \{-1, +1\}$.

The two class distributions do not overlap (Bayes error is 0). The class distributions are not known to AdaBoost.

Weak classifier: a linear classifier

 $h_{w,b}(x) = \operatorname{sign}(w \cdot x + b),$

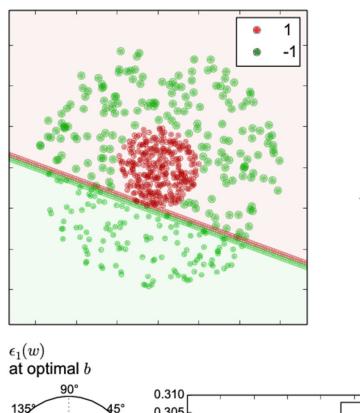
where \boldsymbol{w} is the projection direction vector and \boldsymbol{b} is the bias.

Weak classifier set \mathcal{B} :

 $\{h_{w,b} \mid w \in \{w_1, w_2, ..., w_N\}, b \in \mathbb{R}\}$

- N is the number of projection directions used
- for each projection direction w, varying bias b results in different training errors ε.

 $f_1'(x)$

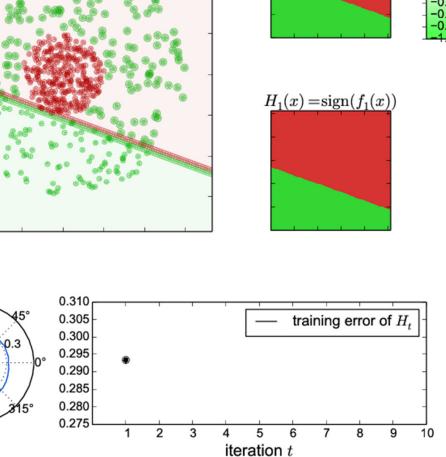


0.0

270°

180

225



t = 1

0.6

0.4 0.2 0.0

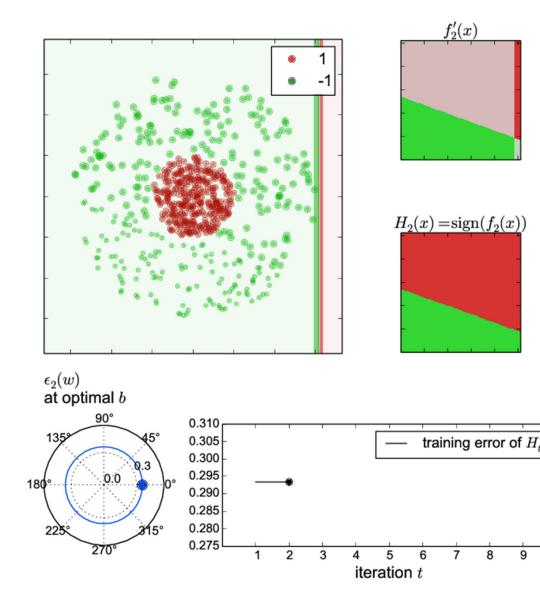
-0.

- h_1 selected (note in the polar plot). N = 36directions w are used.
- $-\epsilon_1 < 0.5$, continue
- $-\alpha_1 = \frac{1}{2}\log(\frac{1-\epsilon_1}{\epsilon_1})$
- re-weighting D puts more weight to mis-classified samples in the • class

$$- f_1(x) = \alpha_1 h_1(x)$$

$$- f_1'(x) = f_1(x) / \alpha_1$$

$$- H_1(x) = \operatorname{sign}(f_1(x))$$



t = 2

0.4 0.2 0.0

10

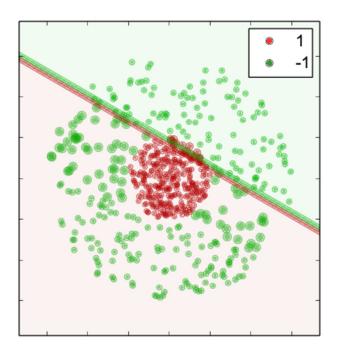
- minimum errors $\epsilon_2(w)$ for all weak classifier directions w are equal. Everything is classified as -1 (•)
- this essentially re-weights the classes; gives more weight to class 1 (•)
- $f_2(x) = \alpha_1 h_1(x) + \alpha_2 h_2(x)$

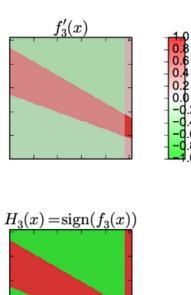
$$- f_2'(x) = \frac{f_2(x)}{\alpha_1 + \alpha_2}$$

 $- H_2(x) = \operatorname{sign}(f_2(x))$

Quiz question:

- What is the difference between $f_2(x)$ and the previous $f_1(x)$? (Note that all points are classified as -1)

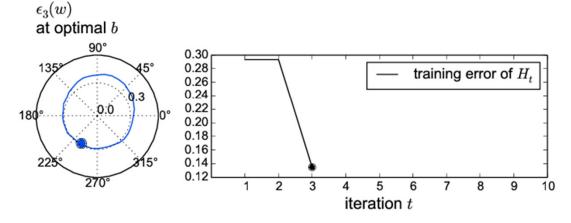


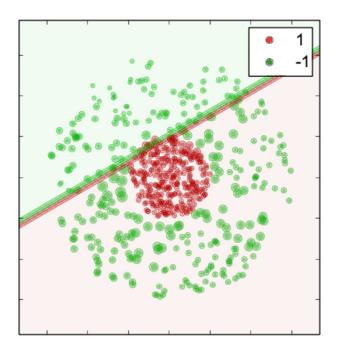


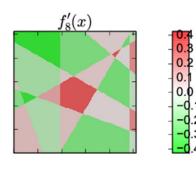
- h₃ selected which minimizes ε₃(w) (note
 in the polar plot).
- $\alpha_3 = \frac{1}{2} \log(\frac{1-\epsilon_3}{\epsilon_3})$
- distribution re-weighted
- $f_3(x) = \sum_{q=1}^3 \alpha_q h_q(x)$

$$- f'_3(x) = \frac{f(x)}{\sum_{q=1}^3 \alpha_q}$$

$$- H_3(x) = \operatorname{sign}(f_3(x))$$







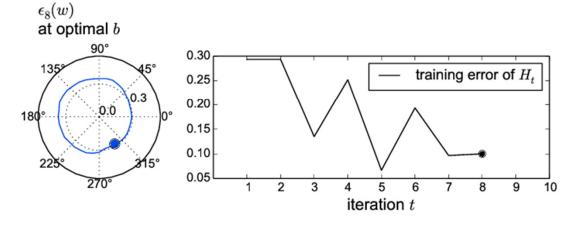
 $H_8(x) = \operatorname{sign}(f_8(x))$

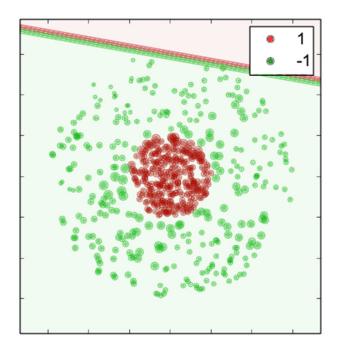
- h_8 selected which minimizes $\epsilon_8(w)$ (note
 - in the polar plot).
- $\alpha_8 = \frac{1}{2} \log(\frac{1-\epsilon_8}{\epsilon_8})$
- distribution re-weighted

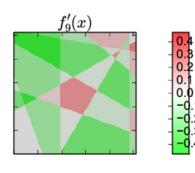
$$-f_8(x) = \sum_{q=1}^8 \alpha_q h_q(x)$$

$$- f'_8(x) = \frac{f(x)}{\sum_{q=1}^8 \alpha_q}$$

$$- H_8(x) = \operatorname{sign}(f_8(x))$$







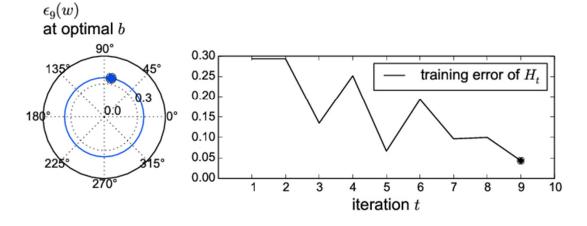
 $H_9(x) = \operatorname{sign}(f_9(x))$

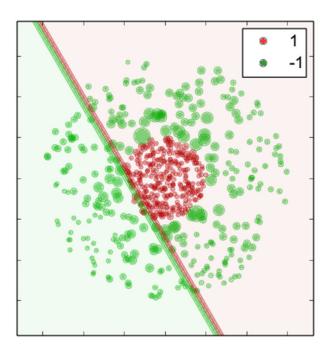
- h₉ selected which minimizes ε₉(w) (note
 in the polar plot).
- $\alpha_9 = \frac{1}{2} \log(\frac{1-\epsilon_9}{\epsilon_9})$
- distribution re-weighted

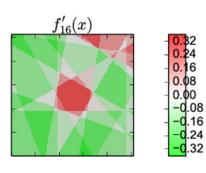
$$- f_9(x) = \sum_{q=1}^9 \alpha_q h_q(x)$$

$$- f'_9(x) = \frac{f(x)}{\sum_{q=1}^9 \alpha_q}$$

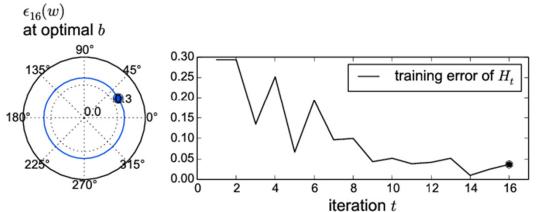
$$- H_9(x) = \operatorname{sign}(f_9(x))$$







 $H_{16}(x) = \operatorname{sign}(f_{16}(x))$

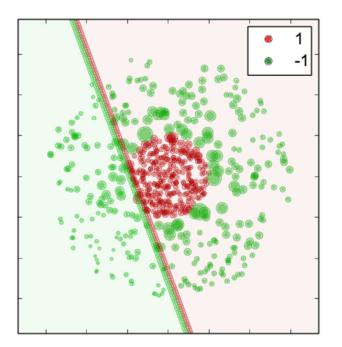


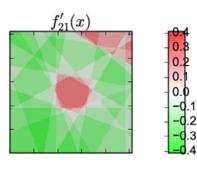
- h_{15} selected which minimizes $\epsilon_{15}(w)$ (note
 - in the polar plot).
- $\alpha_{15} = \frac{1}{2} \log(\frac{1 \epsilon_{15}}{\epsilon_{15}})$
- distribution re-weighted

$$- f_{15}(x) = \sum_{q=1}^{15} \alpha_q h_q(x)$$

$$- f_{15}'(x) = \frac{f(x)}{\sum_{q=1}^{15} \alpha_q}$$

-
$$H_{15}(x) = \operatorname{sign}(f_{15}(x))$$





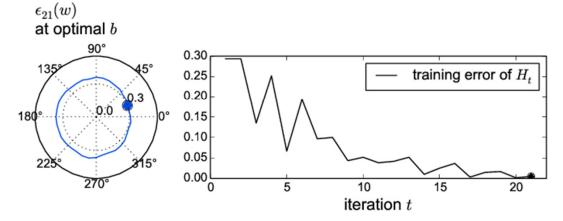
 $H_{21}(x) = \text{sign}(f_{21}(x))$

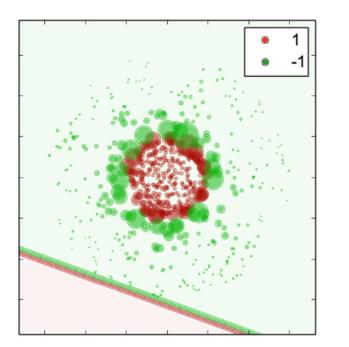
- h_{21} selected which minimizes $\epsilon_{21}(w)$ (note
 - in the polar plot).
- $\alpha_{21} = \frac{1}{2} \log(\frac{1 \epsilon_{21}}{\epsilon_{21}})$
- distribution re-weighted

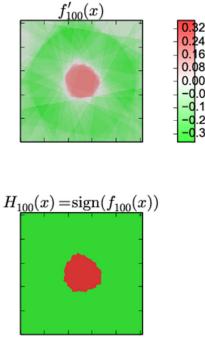
$$- f_{21}(x) = \sum_{q=1}^{21} \alpha_q h_q(x)$$

$$- f'_{21}(x) = \frac{f(x)}{\sum_{q=1}^{21} \alpha_q}$$

-
$$H_{21}(x) = \operatorname{sign}(f_{21}(x))$$







16

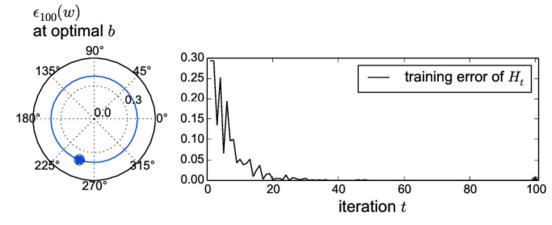
.08 .16 .24 .32 t = 100

- $-h_{100}$ selected which minimizes $\epsilon_{100}(w)$ (note
 - in the polar plot).
- $\alpha_{100} = \frac{1}{2} \log(\frac{1 \epsilon_{100}}{\epsilon_{100}})$
- distribution re-weighted

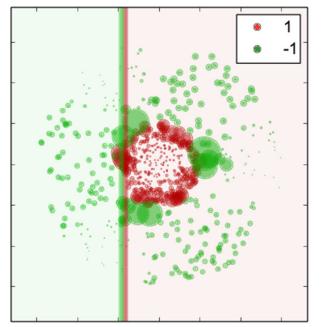
$$- f_{100}(x) = \sum_{q=1}^{100} \alpha_q h_q(x)$$

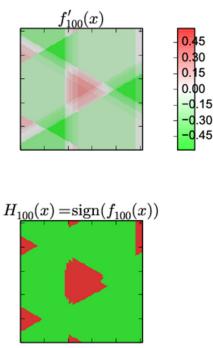
$$- f_{100}'(x) = \frac{f(x)}{\sum_{q=1}^{100} \alpha_q}$$

 $- H_{100}(x) = \operatorname{sign}(f_{100}(x))$



Example 2, N=3 Proj. Directions, Iteration 100





.30

.45

 $\epsilon_{100}(w)$ at optimal b 90° 0.35 135 0.30 training error of H_t 0.25 0.3 0.20 0.0 180 0.15 0.10 0.05 225 0.00L 270° 20 40 60 80 100

iteration t

t = 100

- $-h_{100}$ selected which minimizes $\epsilon_{100}(w)$ (note
 - in the polar plot).
- $\alpha_{100} = \frac{1}{2} \log(\frac{1 \epsilon_{100}}{\epsilon_{100}})$
- distribution re-weighted

$$- f_{100}(x) = \sum_{q=1}^{100} \alpha_q h_q(x)$$

$$- f_{100}'(x) = \frac{f(x)}{\sum_{q=1}^{100} \alpha_q}$$

 $- H_{100}(x) = \operatorname{sign}(f_{100}(x))$

Example 3 - Adaboost Detector

The first two selected classifiers:

The two features have 100% detection rate and 50% false alarm rate

Face Detector, Hard Negative Examples

Images classified as faces by early cascade components

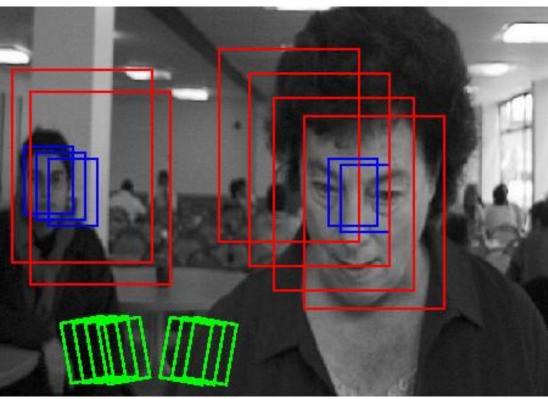
Sampling of Test Window Space

Not every image sub-window must be tested by the classifier. It is sufficient to use:

- shifts by cca 10% window side
- window side size increments of 15%
- window rotation by +/- 15 deg

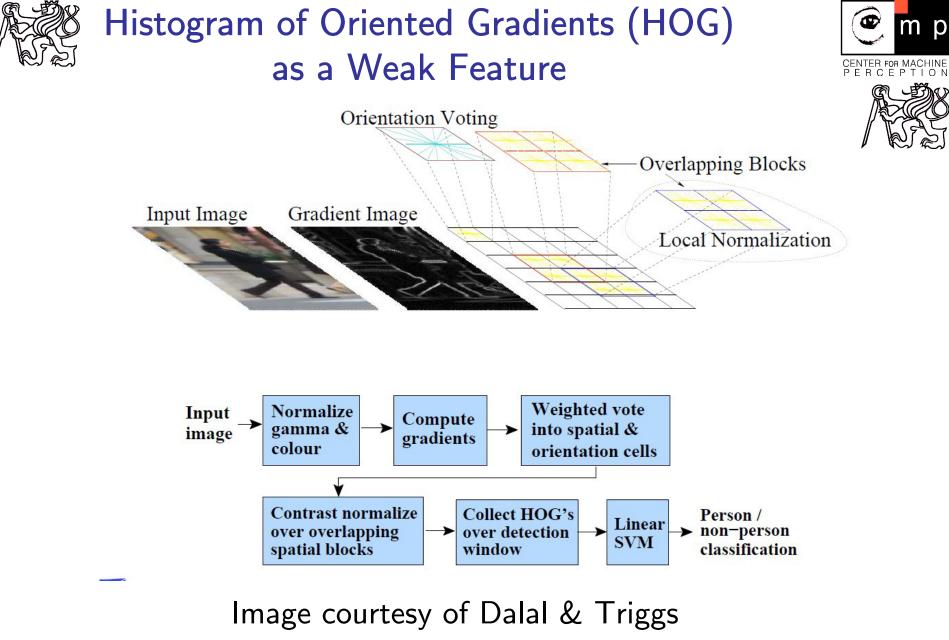
Note:

Total number of sub-windows (thus speed) is determined by the size of smallest face to be detected. Total detection time is the geometric series sum with $q=1/1.15^2$; $s\approx 4t_0$



Historical perspective

- VJ published in 2001.
- Many improvements since then.
- In 2009, implemented in many digital cameras.
- E. g. Waldboost (developed here on CTU) improves the method by addressing the problem of trade-off between speed and accuracy of the Adaboost classifier.



• Dalal, Triggs: *Histogram of Oriented Gradients for Human Detection*, CVPR 2005

Other improvements

- Dollar et al: Fast Pyramids for Object Detection. PAMI 2014. Contributions (among others): Speed up by using less pyramid levels, interpolation of features from octave-spaced pyramid scales
- Benenson et al: *Pedestrian detection at 100 frames per second*. CVPR 2012. Contributions (among others): Computation of HOG without need of explicitly resizing the image => speedup

Thank you for your attention.