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Why HT and not Recognition with Local Features?

Strengths:

� applicable to many objects (e.g. in 
image stitching)

� is real-time

� scales well to very large problems 
(retrieval of millions of images)

� handles occlusion well

� insensitive to a broad class of image 
transformations

Weaknesses:

� applicable to recognition of specific 
objects (no categorization)

� applicable only to objects with 
distinguished local features
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Why HT and not the Scanning Window (Viola-Jones) Method ?

Strengths:

� applicable to many classes of objects

� not restricted to specific objects

� often real-time 

Weaknesses:

� extension to a large number of classes not straightforward 
(standard implementation: linear complexity in the number of 
classes)

� occlusion handling not easy

� full 3D recognition requires too many windows to be checked

� training time is potentially very long
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Hough Transform

� A method for detecting geometric primitives based on evaluation of an
objective function:

is the parameter space,    are tokens (image points of interest)

� Origin: Detection of straight lines

� Examples of     for different geometric primitives:

• Straight line:

• Circle:

� Parameters evaluated on a grid

• Discretization of      : 
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Comparison: Template Matching and HT

� Template Matching:

for all

for all

if satisfies

else

/* nothing */

• Complexity:

� HT: (basic idea: each “token” votes for all primitives it is consistent with)

for all 

find

• Complexity: 
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ω ∈ Ω

J(ω) = 0
x = (x, y) ∈ Image // for all xi ∼ tokens

J(ω) = J(ω) + p(x)

O(|Ω| × |P |)

xi

Ω(xi)

J(ω) = J(ω) + p(xi)

O(|Ω(xi)| × |P |); |Ω(xi)| ≪ |Ω|
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HT for Straight Lines: Parametrization (1)

• Line parametrization:

ax + by + c = 0, (a �= 0 ∨ b �= 0) (1)

(x , y) : point coordinates (2)

(a, b, c) : line parameters (3)

• There are 3 line parameters (a, b, c) in this equation.

• The equation is homogeneous. Parameters (a, b, c) and (ka, kb, kc)
(k �= 0) represent the same line. Thus, there are only 2 degrees
of freedom (2 DOFs) as expected (orientation and shift)

• A 2-DOF representation:

x cos θ + y sin θ − r = 0, (θ ∈ [0, 2π[, r ≥ 0), or
(4)

that’s what we’ll use → θ ∈ [0,π[, r ∈ R) (5)



7

HT for Straight Lines: Parametrization (2)

x cos θ + y sin θ = r , (1)

(θ ∈ [0,π[, r ∈ R) (2)

or,

(x , y) · (cos θ, sin θ) = r (3)

θ ∈ [0,π[, r ∈ R) (4)

Note: n = (cos θ, sin θ) (thus n = 1)
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HT for Straight Lines (3)

Subset of lines incident to p Corresponding line parameters

A point p votes for all lines it can be incident with.
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HT for Straight Lines (4)

Accumulator storing votesImage with a single point

A point p votes for all lines it can be incident with.
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HT for Straight Lines (5)

Accumulated votes from 
all points

Image with multiple point

Multiple points; accumulating votes
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HT for Straight Lines (6)

Accumulator maximumLine with maximum number
of votes

Multiple points; accumulating votes
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HT for Straight Lines (7)

1. Define the minimal parametrization (p, q) of the space of lines: 
• Most common: angle – distance from origin (θ,r)

• Other options: tangent of angle – intercept (a,b) , nearest point to center, ... 

2. Quantize the Hough space: 
• Identify the maximum and minimum values of a and b, and the number of cells, 

3. Create an accumulator array A(p,q); set all values to zero

4. (if gradient available) : For all edge points (xi,yi) in the image
• Use gradient direction 

• Compute a from the equation

• Increment A(p,q) by one

(if gradient not available): For all edge points (xi,yi) in the image
• Increment A(p,q) by one for all lines incident on x,y

5. For all cells in A(p,q)
• Search for the maximum value of A(p,q)

• Calculate the equation of the line

6. To reduce the effect of noise more than one element (elements in a 

neighborhood) in the accumulator array are increased



HT for Straight Lines: Variations

� Besides the discussed representation: 

• The form y = a x + b has a singularity around 90˚. 
Can be overcome by considering two cases, y = a x + b and x = a y + b

• Common parametrization parameterization: x cos(θ) + y sin(θ) = ρ

� Using gradient orientation

• Uses not only point but also orientation consistent with the edge orientation

• Variables: 

• In HT: for 

• Can be used by weighting the strength of the vote by:

…  line orientation,      … gradient orientation
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P,Ω, φ : P → �0, π)

Ω(xi, φ(xi))

|φ− ψ|

φψ
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Examples

• Hough transform for a square (left) and a circle (right)
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Hough Transform: Noisy Line

� Problem: Finding the true maximum

Tokens Votes
θ

ρ

Slide credit: David Lowe
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Hough Transform: Noisy Input

� Problem: Lots of spurious maxima

Tokens Votes

Slide credit: David Lowe

θ

ρ



HT for different primitives (1)
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Circles with known, 
fixed radius 



HT for different primitives (2)
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Circles with unknown 
radius

(x,y) : point coordinates
(xc ,yc) : circle centre
r : circle radius

The accumulator is 
3-dimensional

Voting surface for a point 
at (0,0) and at (0, 40)

(x − xc)
2 + (y − yc)

2 = r2



HT for multiple instances

1. : strongest result of HT

2. Set

3. Unvote

4.

5. Cont. to get as many instances as required

� Greedy

� Sequential 
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p1 = HT (P,Ω)

P1 = P \ p1
p1

p2 = HT (P1,Ω)



Hough Transform Problems

1. Search space (accumulator size) gets prohibitively large easily
• Line segments: 

• Circular arc:

2. Cost function must be additive.

3. Greedy assignment rule of a token to primitive

4. No global objective function for multiple primitives
(global optimization for one primitive only) 
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r, cx, cy, t1, t2
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When is the Hough transform useful?

� Textbooks often imply that it is useful mostly for finding lines
• In fact, it can be very effective for recognizing arbitrary shapes or 

objects (Generalized HT)

� The key to efficiency is to have each feature (token) determine 
as many parameters as possible
• For example, lines can be detected much more efficiently from small 

edge elements (or points with local gradients) than from just points

• For object recognition, each token should predict location, scale, and 
orientation (4D array)

� Bottom line: The Hough transform can extract feature 
groupings from clutter in linear time!

Slide credit: David Lowe
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Generalized Hough Transform [Ballard81]

� Generalization for an arbitrary contour or shape
• Choose reference point for the contour (e.g. center)

• For each point on the contour remember where it is located w.r.t. to 
the reference point 

• Remember radius r and angle φ
relative to the contour tangent

• Recognition: whenever you find 
a contour point, calculate the 
tangent angle and ‘vote’ for all 
possible reference points

• Instead of reference point, can also vote for transformation

⇒ The same idea can be used with local features!

Slide credit: Bernt Schiele
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Gen. Hough Transform with Local Features

� For every feature, store possible “occurrences”

– Object identity

– Pose

– Relative position

• For new image, let the matched features vote for 
possible object positions
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Finding Consistent Configurations

� Global spatial models
• Generalized Hough Transform [Lowe99]

• RANSAC [Obdrzalek02, Chum05, Nister06]

• Basic assumption: object is planar

� Assumption is often justified in practice
• Valid for many structures on 

buildings

• Sufficient for small viewpoint 
variations on 3D objects
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3D Object Recognition

� Gen. HT for Recognition
• Typically only 3 feature matches 

needed for recognition

• Extra matches provide robustness

• Affine model can be used for planar 
objects

Slide credit: David Lowe

[Lowe99]
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Comparison

Gen. Hough Transform

� Advantages

• Very effective for recognizing arbitrary 
shapes or objects

• Can handle high percentage of outliers 
(¿95%)

• Extracts groupings from clutter in 
linear time

� Disadvantages

• Quantization issues

• Only practical for small number of 
dimensions (up to 4)

� Improvements available

• Probabilistic Extensions

• Continuous Voting Space

RANSAC

� Advantages

• General method suited to large range of 
problems

• Easy to implement

• Independent of number of dimensions

� Disadvantages

• Only handles moderate number of 
outliers (¡50%)

� Many variants available, e.g.

• PROSAC: Progressive RANSAC [Chum05]

• Preemptive RANSAC [Nister05]
[Leibe08]



RHT = Randomized Hough Transform [Xu93]

In:

Out:  
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E = {ei},m(Ω, e) = 0

ΩS1 ,ΩS2 , ...,ΩSN

Repeat:

I. Hypothesis

II. Pre-Verification

III. Verification

1. Select random M feature points 

2. Compute

3. Add 1 to accumulator

4. If (accumulator           ) goto III.

Else                           goto I.

5. Find support for

6. If (support            ) output

7. Reset accumulator

ek1 , ..., ekM

Ωk : m(Ωk, ekj ) = 0, j = 1, ...,M

Ωk

(Ωk) > T1

Ωk

(Ωk) > T2 Ωk

Proc v Out Omega-S-N, a v algoritmu Omega-N



Evaluate
N�

i=1

p(xi,Ω) using only a fraction f =
kMAX
N

of N points xi

Probabilistic Hough Transform [Kiryati et al. 91]

Idea: 

Algorithm: 

1. Select        points at random

2. Perform standard HT

Analysis:

• Selection of        is incorrect

⇒ the number L of selected points from     points of a line in a 
random subset of         points is governed by hypergeometric, 
not binomial distance
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kMAX

kMAX

LN
kMAX

P (LN ) =

�
L
LN

��
N−L

kMAX−LN

�

�
N

kMAX

�

µ = N σ2 = kMAX
LN (N − LN )

N2

�
1−

kMAX − 1

N − 1

�



PHT = Monte Carlo Evaluation of  
N�

i=1

p(xi,Ω)

29

Idea:

1.

2. Apply standard MC analysis to find         in PHT to guarantee  kMAX

P{false positive} and P{false negative} < ǫ

Algorithm:

1. Select a random point

2. Vote and return it

3. Finish if         reached kMAX



CHT = Cascaded Hough Transform [Tuytelaars et al. 97]

� Finds structures at different hierarchical levels by iterating one 
kind of HT (fixed points, fixed lines, lines of fixed points, pencils 
of fixed lines)

� Uses duality of lines and points in image and parameter spaces

� Algorithm:
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1. First HT: detects lines in the 
image and keeps dominant peaks 
in the parameter space

2. Second HT: detects lines of 
collinear peaks in parameter 
space and keeps vertices where 
several straight lines in the 
original image intersect 
(vanishing points)

3. Third HT: applied to the peaks 
of thto detect collinear vertices 
(vanishing lines)



CHT: Experiments
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Lines belonging to one of the three detected vanishing points

Aerial image of buildings and streets (left), the corresponding edges (right)
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Thank you for your attention.
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