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Why HT and not Recognition with Local Features? 

Strengths: 

 applicable to many objects (e.g. in 

image stitching) 

 is real-time 

 scales well to very large problems 

(retrieval of millions of images) 

 handles occlusion well 

 insensitive to a broad class of image 

transformations 

Weaknesses: 

 applicable to recognition of specific 

objects (no categorization) 

 applicable only to objects with 

distinguished local features 
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Slide credit: David Lowe 



Why HT and not the Scanning Window (Viola-Jones) Method ? 

Strengths: 

 applicable to many classes of objects 

 not restricted to specific objects 

 often real-time  

 

Weaknesses: 

 extension to a large number of classes not straightforward 

(standard implementation: linear complexity in the number of 

classes) 

 occlusion handling not easy 

 full 3D recognition requires too many windows to be checked 

 training time is potentially very long 
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Hough Transform 

 A method for detecting geometric primitives based on evaluation of an 
objective function: 

 

               is the parameter space,    are tokens (image points of interest) 

 Origin: Detection of straight lines 

 Examples of     for different geometric primitives: 

• Straight line: 

• Circle: 

 Parameters evaluated on a grid 

• Discretization of      :  
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Comparison: Template Matching and HT 

 Template Matching: 

     for all 

       

      for all 

        if satisfies 

 

    else 

  /* nothing */ 

• Complexity: 

 HT: (basic idea: each “token” votes for all primitives it is consistent with) 

   for all  

      find 

 

• Complexity:  
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Hough Transform for Straight Lines 

1. Define the minimal parametrisation (p,q) of the space of lines:  

• Most common: angle – distance from origin (½, µ) 

• Other options: tangent of angle – intercept (a,b) , nearest point to center, ...   

2. Quantize the Hough space:  

• Identify the maximum and minimum values of a and b, and the number of cells,  

3. Create an accumulator array A(p,q); set all values to zero 

4. (if gradient available) : For all edge points (xi,yi) in the image 

• Use gradient direction  

• Compute a from the equation 

• Increment A(p,q) by one 

(if gradient not available): For all edge points (xi,yi) in the image 

• Increment A(p,q) by one for all lines incident on x,y 

5. For all cells in A(p,q)  

• Search for the maximum value of A(p,q) 

• Calculate the equation of the line 

6. To reduce the effect of noise more than one element (elements in a        

     neighborhood) in the accumulator array are increased 



HT for Straight Lines: Variations 

 Representation of a line 

• Usual form y = a x + b has a singularity around 90º.  
Can be overcome by considering two cases, y = a x + b and x = a y + b  

• Common parametrization parameterization: x cos() + y sin() =  

 

 

 

 

 Using gradient orientation 

• Uses not only point but also orientation consistent with the edge orientation 

• Variables:  

• In HT: for  

• Can be used by weighting the strength of the vote by: 

         …  line orientation,      … gradient orientation 
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Examples 

• Hough transform for a square (left) and a circle (right) 
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Hough Transform: Noisy Line 

 

 

 

 

 

 

 

 

 
 

 Problem: Finding the true maximum 

Tokens Votes 
θ 

ρ 

Slide credit: David Lowe 
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Hough Transform: Noisy Input 

 

 

 

 

 

 

 

 

 
 

 Problem: Lots of spurious maxima 

Tokens Votes 

Slide credit: David Lowe 

θ 

ρ 



HT for different primitive: circles, … 
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• circles with fixed radius  
• circles 
• squares with a known 

orientation and size 
• rectangles 

 



HT for multiple instances 

1.                  : strongest result of HT 

2. Set 

3. Unvote 

4.    

5. Cont. to get as many instances as required 

 

 Greedy 

 Sequential  
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p1 =HT(P;­)

P1 = P n p1
p1

p2 =HT(P1;­)



Hough Transform Problems 

1. Search space (accumulator size) gets prohibitively large easily 

• Line segments:  

• Circular arc: 

2. Cost function must be additive. 

3. Greedy assignment rule of a token to primitive 

4. No global objective function for multiple primitives 

(global optimization for one primitive only)  
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When is the Hough transform useful? 

 Textbooks often imply that it is useful mostly for finding lines 

• In fact, it can be very effective for recognizing arbitrary shapes or 
objects (Generalized HT) 

 The key to efficiency is to have each feature (token) determine 
as many parameters as possible 

• For example, lines can be detected much more efficiently from small 
edge elements (or points with local gradients) than from just points 

• For object recognition, each token should predict location, scale, and 
orientation (4D array) 

 Bottom line: The Hough transform can extract feature 
groupings from clutter in linear time! 

Slide credit: David Lowe 
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Generalized Hough Transform [Ballard81] 

 Generalization for an arbitrary contour or shape 

• Choose reference point for the contour (e.g. center) 

• For each point on the contour remember where it is located w.r.t. to 

the reference point  

• Remember radius r and angle  
relative to the contour tangent 

• Recognition: whenever you find  

a contour point, calculate the  

tangent angle and ‘vote’ for all  

possible reference points 

 

 

• Instead of reference point, can also vote for transformation 

 The same idea can be used with local features! 

Slide credit: Bernt Schiele 
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Gen. Hough Transform with Local Features 

 For every feature, store possible “occurrences” 

 

–  Object identity 

–  Pose 

–  Relative position 

• For new image, let the matched features vote for 
possible object positions 
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Finding Consistent Configurations 

 Global spatial models 

• Generalized Hough Transform [Lowe99] 

• RANSAC [Obdrzalek02, Chum05, Nister06] 

• Basic assumption: object is planar 

 

 Assumption is often justified in practice 

• Valid for many structures on  

buildings 

• Sufficient for small viewpoint  

variations on 3D objects 
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3D Object Recognition 

 Gen. HT for Recognition 

• Typically only 3 feature matches 

needed for recognition 

• Extra matches provide robustness 

• Affine model can be used for planar 

objects 

Slide credit: David Lowe 

[Lowe99] 
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Comparison 

Gen. Hough Transform 

 Advantages 

• Very effective for recognizing arbitrary 

shapes or objects 

• Can handle high percentage of outliers 

(>95%) 

• Extracts groupings from clutter in 

linear time 
 

 Disadvantages 

• Quantization issues 

• Only practical for small number of 

dimensions (up to 4) 

 

 Improvements available 

• Probabilistic Extensions 

• Continuous Voting Space 

RANSAC 

 Advantages 

• General method suited to large range of 

problems 

• Easy to implement 

• Independent of number of dimensions 

 
 

 Disadvantages 

• Only handles moderate number of 

outliers (<50%) 

 

 

 Many variants available, e.g. 

• PROSAC: Progressive RANSAC [Chum05] 

• Preemptive RANSAC [Nister05] 
[Leibe08] 



RHT = Randomized Hough Transform [Xu93] 

In: 

Out:   
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E = feig;m(­; e) = 0

­S1;­S2; :::;­SN

Repeat: 

I. Hypothesis 

 

II. Pre-Verification 

 

 

III. Verification 

1. Select random M feature points  

2. Compute 

3. Add 1 to accumulator 

4. If (accumulator           ) goto III.  

Else                           goto I. 

5. Find support for 

6. If (support            ) output  

7. Reset accumulator 

ek1; :::; ekM

­k :m(­k; ekj) = 0; j = 1; :::;M

­k

(­k) > T1

­k

(­k) > T2 ­k

Proc v Out Omega-S-N, a v algoritmu Omega-N 



Evaluate

NX

i=1

p(xi;­) using only a fraction f =
kMAX

N
of N points xi

Probabilistic Hough Transform [Kiryati et al. 91] 

Idea:  

Algorithm:  

1. Select        points at random 

2. Perform standard HT 

Analysis: 

• Selection of        is incorrect 

 the number L of selected points from     points of a line in a 

random subset of         points is governed by hypergeometric, 

not binomial distance 

  

21 

kMAX

kMAX

LN

kMAX

P (LN) =

¡
L
LN

¢¡
N¡L

kMAX¡LN

¢
¡

N
kMAX

¢

¹ =N ¾2 = kMAX
LN(N ¡LN)

N2

µ
1¡ kMAX ¡ 1

N ¡ 1

¶



PHT = Monte Carlo Evaluation of   
NX

i=1

p(xi;­)
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Idea: 

1.   

2. Apply standard MC analysis to find         in PHT to guarantee   kMAX

Pffalse positiveg and Pffalse negativeg< ²

Algorithm: 

1. Select a random point 

2. Vote and return it 

3. Finish if         reached  kMAX



CHT = Cascaded Hough Transform [Tuytelaars et al. 97] 

 Finds structures at different hierarchical levels by iterating one 

kind of HT (fixed points, fixed lines, lines of fixed points, pencils 

of fixed lines) 

 Uses duality of lines and points in image and parameter spaces 

 Algorithm: 
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1. First HT: detects lines in the 

image and keeps dominant peaks 

in the parameter space 

2. Second HT: detects lines of 

collinear peaks in parameter 

space and keeps vertices where 

several straight lines in the 

original image intersect 

(vanishing points) 
3. Third HT: applied to the peaks 

of thto detect collinear vertices 

(vanishing lines) 



CHT: Experiments 
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Lines belonging to one of the three detected vanishing points 

Aerial image of buildings and streets (left), the corresponding edges (right) 
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Thank you for your attention. 
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