
Hough Transform

Jiří Matas
Center for Machine Perception

Department of Cybernetics, Faculty of Electrical Engineering

Czech Technical University, Prague

Many slides thanks to Kristen Grauman and Bastian Leibe

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAAAAAA

Why HT and not Recognition with Local Features?

Strengths:

 applicable to many objects (e.g. in

image stitching)

 is real-time

 scales well to very large problems

(retrieval of millions of images)

 handles occlusion well

 insensitive to a broad class of image

transformations

Weaknesses:

 applicable to recognition of specific

objects (no categorization)

 applicable only to objects with

distinguished local features
2

Slide credit: David Lowe

Why HT and not the Scanning Window (Viola-Jones) Method ?

Strengths:

 applicable to many classes of objects

 not restricted to specific objects

 often real-time

Weaknesses:

 extension to a large number of classes not straightforward

(standard implementation: linear complexity in the number of

classes)

 occlusion handling not easy

 full 3D recognition requires too many windows to be checked

 training time is potentially very long

3/25

Hough Transform

 A method for detecting geometric primitives based on evaluation of an
objective function:

 is the parameter space, are tokens (image points of interest)

 Origin: Detection of straight lines

 Examples of for different geometric primitives:

• Straight line:

• Circle:

 Parameters evaluated on a grid

• Discretization of :

4

Comparison: Template Matching and HT

 Template Matching:

 for all

 for all

 if satisfies

 else

 /* nothing */

• Complexity:

 HT: (basic idea: each “token” votes for all primitives it is consistent with)

 for all

 find

• Complexity:

5

! 2 ­

J(!) = 0

x= (x; y) 2 Image == for all xi » tokens

J(!) = J(!) + p(x)

O(j­j £ jP j)

xi

­(xi)

J(!) = J(!) + p(xi)

O(j­(xi)j £ jP j); j­(xi)j ¿ j­j

6

Hough Transform for Straight Lines

1. Define the minimal parametrisation (p,q) of the space of lines:

• Most common: angle – distance from origin (½, µ)

• Other options: tangent of angle – intercept (a,b) , nearest point to center, ...

2. Quantize the Hough space:

• Identify the maximum and minimum values of a and b, and the number of cells,

3. Create an accumulator array A(p,q); set all values to zero

4. (if gradient available) : For all edge points (xi,yi) in the image

• Use gradient direction

• Compute a from the equation

• Increment A(p,q) by one

(if gradient not available): For all edge points (xi,yi) in the image

• Increment A(p,q) by one for all lines incident on x,y

5. For all cells in A(p,q)

• Search for the maximum value of A(p,q)

• Calculate the equation of the line

6. To reduce the effect of noise more than one element (elements in a

 neighborhood) in the accumulator array are increased

HT for Straight Lines: Variations

 Representation of a line

• Usual form y = a x + b has a singularity around 90º.
Can be overcome by considering two cases, y = a x + b and x = a y + b

• Common parametrization parameterization: x cos() + y sin() = 

 Using gradient orientation

• Uses not only point but also orientation consistent with the edge orientation

• Variables:

• In HT: for

• Can be used by weighting the strength of the vote by:

 … line orientation, … gradient orientation

7

K. Grauman, B. Leibe




x

y

θ

ρ

x

y

P;­; Á : P ! h0; ¼)
­(xi; Á(xi))

jÁ¡Ãj
ÁÃ

8
K. Grauman, B. Leibe

Examples

• Hough transform for a square (left) and a circle (right)

9
K. Grauman, B. Leibe

Hough Transform: Noisy Line

 Problem: Finding the true maximum

Tokens Votes
θ

ρ

Slide credit: David Lowe

10
K. Grauman, B. Leibe

Hough Transform: Noisy Input

 Problem: Lots of spurious maxima

Tokens Votes

Slide credit: David Lowe

θ

ρ

HT for different primitive: circles, …

11

• circles with fixed radius
• circles
• squares with a known

orientation and size
• rectangles

HT for multiple instances

1. : strongest result of HT

2. Set

3. Unvote

4.

5. Cont. to get as many instances as required

 Greedy

 Sequential

12

p1 =HT(P;­)

P1 = P n p1
p1

p2 =HT(P1;­)

Hough Transform Problems

1. Search space (accumulator size) gets prohibitively large easily

• Line segments:

• Circular arc:

2. Cost function must be additive.

3. Greedy assignment rule of a token to primitive

4. No global objective function for multiple primitives

(global optimization for one primitive only)

13

r; cx; cy; t1; t2

14
K. Grauman, B. Leibe

When is the Hough transform useful?

 Textbooks often imply that it is useful mostly for finding lines

• In fact, it can be very effective for recognizing arbitrary shapes or
objects (Generalized HT)

 The key to efficiency is to have each feature (token) determine
as many parameters as possible

• For example, lines can be detected much more efficiently from small
edge elements (or points with local gradients) than from just points

• For object recognition, each token should predict location, scale, and
orientation (4D array)

 Bottom line: The Hough transform can extract feature
groupings from clutter in linear time!

Slide credit: David Lowe

15
K. Grauman, B. Leibe

Generalized Hough Transform [Ballard81]

 Generalization for an arbitrary contour or shape

• Choose reference point for the contour (e.g. center)

• For each point on the contour remember where it is located w.r.t. to

the reference point

• Remember radius r and angle 
relative to the contour tangent

• Recognition: whenever you find

a contour point, calculate the

tangent angle and ‘vote’ for all

possible reference points

• Instead of reference point, can also vote for transformation

 The same idea can be used with local features!

Slide credit: Bernt Schiele

16
K. Grauman, B. Leibe

Gen. Hough Transform with Local Features

 For every feature, store possible “occurrences”

– Object identity

– Pose

– Relative position

• For new image, let the matched features vote for
possible object positions

17
K. Grauman, B. Leibe

Finding Consistent Configurations

 Global spatial models

• Generalized Hough Transform [Lowe99]

• RANSAC [Obdrzalek02, Chum05, Nister06]

• Basic assumption: object is planar

 Assumption is often justified in practice

• Valid for many structures on

buildings

• Sufficient for small viewpoint

variations on 3D objects

18
K. Grauman, B. Leibe

3D Object Recognition

 Gen. HT for Recognition

• Typically only 3 feature matches

needed for recognition

• Extra matches provide robustness

• Affine model can be used for planar

objects

Slide credit: David Lowe

[Lowe99]

19
K. Grauman, B. Leibe

Comparison

Gen. Hough Transform

 Advantages

• Very effective for recognizing arbitrary

shapes or objects

• Can handle high percentage of outliers

(>95%)

• Extracts groupings from clutter in

linear time

 Disadvantages

• Quantization issues

• Only practical for small number of

dimensions (up to 4)

 Improvements available

• Probabilistic Extensions

• Continuous Voting Space

RANSAC

 Advantages

• General method suited to large range of

problems

• Easy to implement

• Independent of number of dimensions

 Disadvantages

• Only handles moderate number of

outliers (<50%)

 Many variants available, e.g.

• PROSAC: Progressive RANSAC [Chum05]

• Preemptive RANSAC [Nister05]
[Leibe08]

RHT = Randomized Hough Transform [Xu93]

In:

Out:

20

E = feig;m(­; e) = 0

­S1;­S2; :::;­SN

Repeat:

I. Hypothesis

II. Pre-Verification

III. Verification

1. Select random M feature points

2. Compute

3. Add 1 to accumulator

4. If (accumulator) goto III.

Else goto I.

5. Find support for

6. If (support) output

7. Reset accumulator

ek1; :::; ekM

­k :m(­k; ekj) = 0; j = 1; :::;M

­k

(­k) > T1

­k

(­k) > T2 ­k

Proc v Out Omega-S-N, a v algoritmu Omega-N

Evaluate

NX

i=1

p(xi;­) using only a fraction f =
kMAX

N
of N points xi

Probabilistic Hough Transform [Kiryati et al. 91]

Idea:

Algorithm:

1. Select points at random

2. Perform standard HT

Analysis:

• Selection of is incorrect

 the number L of selected points from points of a line in a

random subset of points is governed by hypergeometric,

not binomial distance

21

kMAX

kMAX

LN

kMAX

P (LN) =

¡
L
LN

¢¡
N¡L

kMAX¡LN

¢
¡

N
kMAX

¢

¹ =N ¾2 = kMAX
LN(N ¡LN)

N2

µ
1¡ kMAX ¡ 1

N ¡ 1

¶

PHT = Monte Carlo Evaluation of
NX

i=1

p(xi;­)

22

Idea:

1.

2. Apply standard MC analysis to find in PHT to guarantee kMAX

Pffalse positiveg and Pffalse negativeg< ²

Algorithm:

1. Select a random point

2. Vote and return it

3. Finish if reached kMAX

CHT = Cascaded Hough Transform [Tuytelaars et al. 97]

 Finds structures at different hierarchical levels by iterating one

kind of HT (fixed points, fixed lines, lines of fixed points, pencils

of fixed lines)

 Uses duality of lines and points in image and parameter spaces

 Algorithm:

23

1. First HT: detects lines in the

image and keeps dominant peaks

in the parameter space

2. Second HT: detects lines of

collinear peaks in parameter

space and keeps vertices where

several straight lines in the

original image intersect

(vanishing points)
3. Third HT: applied to the peaks

of thto detect collinear vertices

(vanishing lines)

CHT: Experiments

24

Lines belonging to one of the three detected vanishing points

Aerial image of buildings and streets (left), the corresponding edges (right)

25

Thank you for your attention.

macros.tex
sfmath.sty
cmpitemize.tex

