Digital Image Processing

19

Course organization

Teachers 2011:

» Lecturer & lab tutor: Ond¥ej Drbohlav
Courseware:

» http://cw.felk.cvut.cz

» = online discussion of conditions and rules

)

19

http://cw.felk.cvut.cz

Digital image - Origin

Digital image - Origin

image function f(x,y)

/19

Image function f(x, y)

Image function is a mapping:

f:Q— R
domain Q| range R

various:

lives in| Q c R? |color
R C R3

X, ¥y |each
unit each: | channel
[mm] [Wm~?]

/19

Image function f(x, y)

Image function is a mapping:

f:Q— R
domain Q| range R
various:
lives in| Q@ c R? |grayvalue
RcR
X, ¥y |each
unit each: | channel
[mm] | [Wm?]

/19

Image function f(x,y) (2)

Image function is a mapping:

f:Q— R

This can be regarded as a set

of ordered pairs ([x, y], value).

Both Q and R are continuous!

The major part of this lecture
will be concerned with how to
represent the image function
in a digital form.

/19

Representing image function

X
This requires use of finite memory

space.

6/19

Representing image function

X
This requires use of finite memory

space.

» representing f by finite
number of numbers =
sampling

/19

Representing image function

This requires use of finite memory
space.

» representing f by finite
number of numbers =
sampling

» at each such point, store the
value in finite precision =
quantization.

/19

Sampling (1)

» Representing f using values sampled on a regular grid is
by far the most common choice.

» There can be other representations (functional forms,
etc.)

» There can be other sampling schemes (hexagonal,
irregular, etc.)

19

Sampling (2)

How to sample properly? Intuitively, the function should not
change much between two sampling points. Compare these
60x90 images . ..

__.
Tl
-

Sampling (2)

How to sample properly? Intuitively, the function should not
change much between two sampling points. Compare these
60x90 images . ..

/19

Sampling (2)

How to sample properly? Intuitively, the function should not
change much between two sampling points. Compare these
60x90 images . ..and the source image function!

19

Sampling (3)

link:

necessary to ensure that there are no high-frequency
oscilations in the image function before sampling

if necessary, filter the function before sampling

this has relation to aliasing and Nyquist theory — we will
be talking about it later.

some blackboard scribble

19

Quantization

256 levels

10/19

Quantization

B N

64 levels

10/19

Quantization

- S

32 levels

10/19

Quantization

16 levels

10/19

Quantization

_8 levels

£ B

10/19

Quantization

10/19

Quantization

2 levels

Quantization & sampling — interplay

v

Would it be possible to trade quantization for resolution?
E.g. using only 2 levels but increasing sampling rate

v

... not attractive from coding/compression point of view

» ...but necessary for creating the image function at some
output devices which use limited number of levels

v

E.g. black & white printers

v

Displays (Amazon Kindle)
= Dithering

v

11/19

Dithering (random) (1)

Simple but effective: random dithering

» |dea: represent a number i € (0,1) by an ensamble of 0's
and 1's such that their expected value is i.
» How:

Wwhite noise generator,
s from (0, 1)

i—{(i>s)? 0:1]— output

12 /19

Dithering (random) (1)

Simple but effective: random dithering

» |dea: represent a number i € (0,1) by an ensamble of 0's
and 1's such that their expected value is i.

» How: (matlab code)
function o = dither randomly(im);
% function o = dither_randomly(im);
% dithers a uint8 image using random
% sampling.
t = 255xrand(size(im));
o =1t < im;

12 /19

Dithering (random) (2, Examples)

ramp, 0-255

13/19

Examples)

2

(

random)

Dithering (

0/1

ithered,

d

Dithering (random) (2, Examples)

thresholded, 0/1

information about the shape of
the ramp is forever lost

13 /19

Dithering (random) (2, Examples)

original, 256 levels

L

13/19

Dithering (random) (2, Examples

13/19

Dithering (3)

Can we do better?

» with the previous approach, the advantage is simplicity

» ...but the problem is that the output image neighboring
pixels are generated completely independently

» leading to sub-optimal result

14 /19

Dithering (3)

Can we do better?
» with the previous approach, the advantage is simplicity

» ...but the problem is that the output image neighboring
pixels are generated completely independently

» leading to sub-optimal result

» another easy way: code and distribute the residuum to
neighboring pixels

» = Floyd-Steinberg dithering

link: blackboard explanation

14 /19

Dithering (4, Floyd-Steinberg)

ramp, 0-255

15/19

Dithering (4, Floyd-Steinberg)

dithered, 0/1

Dithering (4, Floyd-Steinberg)

original, 256 levels

L

15/19

Dithering (4, Floyd-Steinberg)

dithered, 0/1

15/19

Dithering (5, Comparison

Floyd-Steinberg

19

Dithering (6, Comparison I1)

filtered by a Gaussian, o0 = 3

random Floyd-Steinberg

17 /19

Dithering (6, Comparison I1)

original

17 /19

Information

» So far, we have seen that with different options of
sampling/quantization, different amount of information is
lost

» Connected to this is information-theoretic view of an
image contents

18 /19

Histogram, entropy

v

Histogram: stores frequencies g(/) for all values i in an
image

» for a gray-scale, 8 bit image: 256 bins

v

probability of a given intensity value is

p(i) = q(i)/N,

N is the number of pixels in an image

v

entropy:
255

H == pli)loga (i)

19/19

Problems with sampling an image function. When the function
oscilates to a large extent in between the sampling locations,
information about its shape are lost [see red colored sampling points]

L
/ function
l/smoothed version
—N——
smoothing:

average over an extended area

To retain at least some information about the shape of the function,
the function has to be made smooth prior to sampling [see blue colored
sampling points].

Floyd - Steinberg dithering algorithm - example. The goal is to represent an image by values which are either 0 or 255.

100 closer to O than to 255. Replace this value by 0. Error is 100-0=100. Distribute

this error to the 4 surrounding pixels

1002100 [100 |100 \ o [@25)|100 [100
= B —
100 | 100 | 100 |100 |100 L) @D 1625|100 100

= increment them all by 25.

Then, continue with the next pixel in a left-to-right, top-to-bottom manner.

Note that this is the demonstration of the principle. In the actual Floyd-Steinberg algorithm,
the error is not distributed to the four neighbors evenly, but by the following weights:

1/16 [
[3

X
5

7
1]

