Digital Image Processing
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Course organization

Teachers 2011:

» Lecturer & lab tutor: Ond¥ej Drbohlav
Courseware:

» http://cw.felk.cvut.cz

» = online discussion of conditions and rules

)
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Digital image - Origin

image function f(x,y)
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Image function f(x, y)

Image function is a mapping:

f:Q— R
domain Q| range R

various:

lives in| Q c R? |color
R C R3

X, ¥y |each
unit each: | channel
[mm] [Wm~?]
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Image function f(x, y)

Image function is a mapping:

f:Q— R
domain Q| range R
various:
lives in| Q@ c R? |grayvalue
RcR
X, ¥y |each
unit each: | channel
[mm] | [Wm?]
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Image function f(x,y) (2)

Image function is a mapping:

f:Q— R

This can be regarded as a set

of ordered pairs ([x, y], value).

Both Q and R are continuous!

The major part of this lecture
will be concerned with how to
represent the image function
in a digital form.
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Representing image function

X
This requires use of finite memory

space.
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Representing image function

X
This requires use of finite memory

space.

» representing f by finite
number of numbers =
sampling
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Representing image function

This requires use of finite memory
space.

» representing f by finite
number of numbers =
sampling

» at each such point, store the
value in finite precision =
quantization.
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Sampling (1)

» Representing f using values sampled on a regular grid is
by far the most common choice.

» There can be other representations (functional forms,
etc.)

» There can be other sampling schemes (hexagonal,
irregular, etc.)
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Sampling (2)

How to sample properly? Intuitively, the function should not
change much between two sampling points. Compare these
60x90 images . ..
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Sampling (2)

How to sample properly? Intuitively, the function should not
change much between two sampling points. Compare these
60x90 images . ..

/19



Sampling (2)

How to sample properly? Intuitively, the function should not
change much between two sampling points. Compare these
60x90 images . ..and the source image function!
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Sampling (3)

link:

necessary to ensure that there are no high-frequency
oscilations in the image function before sampling

if necessary, filter the function before sampling

this has relation to aliasing and Nyquist theory — we will
be talking about it later.

some blackboard scribble
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Quantization

256 levels
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Quantization

B N

64 levels
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Quantization

- S

32 levels
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Quantization

16 levels
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Quantization

_8 levels

£ B
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Quantization
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Quantization

2 levels




Quantization & sampling — interplay

v

Would it be possible to trade quantization for resolution?
E.g. using only 2 levels but increasing sampling rate

v

... not attractive from coding/compression point of view

» ...but necessary for creating the image function at some
output devices which use limited number of levels

v

E.g. black & white printers

v

Displays (Amazon Kindle)
= Dithering

v
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Dithering (random) (1)

Simple but effective: random dithering

» |dea: represent a number i € (0,1) by an ensamble of 0's
and 1's such that their expected value is i.
» How:

Wwhite noise generator,
s from (0, 1)

i—{(i>s)? 0:1]— output
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Dithering (random) (1)

Simple but effective: random dithering

» |dea: represent a number i € (0,1) by an ensamble of 0's
and 1's such that their expected value is i.

» How: (matlab code)
function o = dither randomly(im);
% function o = dither_randomly(im);
% dithers a uint8 image using random
% sampling.
t = 255xrand(size(im));
o =1t < im;

12 /19



Dithering (random) (2, Examples)

ramp, 0-255
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Examples)

2

(

random)

Dithering (

0/1

ithered,

d




Dithering (random) (2, Examples)

thresholded, 0/1

information about the shape of
the ramp is forever lost
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Dithering (random) (2, Examples)

original, 256 levels

L
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Dithering (random) (2, Examples
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Dithering (3)

Can we do better?

» with the previous approach, the advantage is simplicity

» ...but the problem is that the output image neighboring
pixels are generated completely independently

» leading to sub-optimal result
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Dithering (3)

Can we do better?
» with the previous approach, the advantage is simplicity

» ...but the problem is that the output image neighboring
pixels are generated completely independently

» leading to sub-optimal result

» another easy way: code and distribute the residuum to
neighboring pixels

» = Floyd-Steinberg dithering

link: blackboard explanation
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Dithering (4, Floyd-Steinberg)

ramp, 0-255
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Dithering (4, Floyd-Steinberg)

dithered, 0/1




Dithering (4, Floyd-Steinberg)

original, 256 levels

L
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Dithering (4, Floyd-Steinberg)

dithered, 0/1
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Dithering (5, Comparison

Floyd-Steinberg
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Dithering (6, Comparison I1)

filtered by a Gaussian, o0 = 3

random Floyd-Steinberg
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Dithering (6, Comparison I1)

original
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Information

» So far, we have seen that with different options of
sampling/quantization, different amount of information is
lost

» Connected to this is information-theoretic view of an
image contents
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Histogram, entropy

v

Histogram: stores frequencies g(/) for all values i in an
image

» for a gray-scale, 8 bit image: 256 bins

v

probability of a given intensity value is

p(i) = q(i)/N,

N is the number of pixels in an image

v

entropy:
255

H == pli)loga (i)
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Problems with sampling an image function. When the function
oscilates to a large extent in between the sampling locations,
information about its shape are lost [see red colored sampling points]

L
/ function
l/smoothed version
—N——
smoothing:

average over an extended area

To retain at least some information about the shape of the function,
the function has to be made smooth prior to sampling [see blue colored
sampling points].



Floyd - Steinberg dithering algorithm - example. The goal is to represent an image by values which are either 0 or 255.

100 closer to O than to 255. Replace this value by 0. Error is 100-0=100. Distribute

this error to the 4 surrounding pixels

1002100 [100 |100 \ o [@25)|100 [100
= B —
100 | 100 | 100 |100 |100 L) @D 1625|100 100

= increment them all by 25.

Then, continue with the next pixel in a left-to-right, top-to-bottom manner.

Note that this is the demonstration of the principle. In the actual Floyd-Steinberg algorithm,
the error is not distributed to the four neighbors evenly, but by the following weights:
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