
P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 1 / 25

AE4B99RPH: Problem Solving and Games

Automated Tests. Test-Driven Development.

Petr Pošík

Dept. of Cybernetics

CTU FEE

Motivation

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 2 / 25

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Mistakes more common than expected:

✔ The submitted module was not named vectors.py.

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Mistakes more common than expected:

✔ The submitted module was not named vectors.py.

✔ The class was not named MyVector.

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Mistakes more common than expected:

✔ The submitted module was not named vectors.py.

✔ The class was not named MyVector.

✔ The methods were not named __add__() and norm().

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Mistakes more common than expected:

✔ The submitted module was not named vectors.py.

✔ The class was not named MyVector.

✔ The methods were not named __add__() and norm().

✔ Method __add__ did not return an instance of class MyVector.

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Mistakes more common than expected:

✔ The submitted module was not named vectors.py.

✔ The class was not named MyVector.

✔ The methods were not named __add__() and norm().

✔ Method __add__ did not return an instance of class MyVector.

✔ The source code did not get the indentation (structure) right.

Trivial failures to fulfill the given specifications!

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Mistakes more common than expected:

✔ The submitted module was not named vectors.py.

✔ The class was not named MyVector.

✔ The methods were not named __add__() and norm().

✔ Method __add__ did not return an instance of class MyVector.

✔ The source code did not get the indentation (structure) right.

Trivial failures to fulfill the given specifications!

Why did not you discover these bugs?

Feedback from the first lab test

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 25

Task: Equip class MyVector with the following methods:

✔ __add__(self, other): addition of 2 vectors

✔ norm(self): the Euclidean norm (length) of the vector

Mistakes more common than expected:

✔ The submitted module was not named vectors.py.

✔ The class was not named MyVector.

✔ The methods were not named __add__() and norm().

✔ Method __add__ did not return an instance of class MyVector.

✔ The source code did not get the indentation (structure) right.

Trivial failures to fulfill the given specifications!

Why did not you discover these bugs?

How to test your own code?

Test it in Python shell

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 4 / 25

Run the Python shell and try to use the code as expected:

>>> from vectors import MyVector
>>> a = MyVector([1,1,1])
>>> b = MyVector([1,2,3])
>>> c = a+b
>>> type(c)
<class ’vectors.MyVector’>
>>> c.get_vector()
[2, 3, 4]

Test it in Python shell

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 4 / 25

Run the Python shell and try to use the code as expected:

>>> from vectors import MyVector
>>> a = MyVector([1,1,1])
>>> b = MyVector([1,2,3])
>>> c = a+b
>>> type(c)
<class ’vectors.MyVector’>
>>> c.get_vector()
[2, 3, 4]

✔ You would detect all the above mentioned mistakes.

✔ Sometimes you have to change the working directory (import os; os.chdir()).

✔ Issues with re-importing already imported module:

✘ Python 2x: reload(module)

✘ Python 3x: import imp; imp.reload(module)

✘ . . . yet, it is not a good solution.

✘ Reliable solution: restart the shell.

Test it when you run the module

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 5 / 25

Take advantage of if __name__==’__main__’: to run the tests:

if __name__=="__main__":
from vectors import MyVector
a = MyVector([1,1,1])
b = MyVector([1,2,3])
c = a+b
print(type(c))
print(c.get_vector())

Test it when you run the module

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 5 / 25

Take advantage of if __name__==’__main__’: to run the tests:

if __name__=="__main__":
from vectors import MyVector
a = MyVector([1,1,1])
b = MyVector([1,2,3])
c = a+b
print(type(c))
print(c.get_vector())

✔ No need to worry about the working directory.

✔ Your “test” will work even without the explicit module import — if the module
name is wrong, we can overlook it.

✔ However, the import can be used explicitely. It does not harm and the wrong
module name will be discovered.

Test it with the help of testing tools

Motivation
Feedback from the first
lab test

Test it in Python shell

Test it when you run the
module
Test it with the help of
testing tools

Testing

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 6 / 25

Modules for automated testing:

✔ doctest, unittest, or other frameworks

✔ you can run a lot of tests at once with all the results nicely summarized

Automated testing

Based on
Gerard Meszarosz: xUnit Test Patterns: Refactoring Test Code,

Addison-Wesley, 2007.

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 7 / 25

Testing

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 8 / 25

Testing from the QA team point of view:

✔ Ensure that the code fulfills customer requirements and does not contain bugs.

✔ Test after the code is complete.

✔ The feedback is too late.

Testing

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 8 / 25

Testing from the QA team point of view:

✔ Ensure that the code fulfills customer requirements and does not contain bugs.

✔ Test after the code is complete.

✔ The feedback is too late.

Testing from the programmer’s point of view (unit tests, integration tests):

✔ Ensure that the unit I am working on right now fulfills the requirements that
emerged as a result of the application architecture design.

✔ Test during development.

✔ The feedback comes much sooner.

Programmer’s testing

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 9 / 25

Hopefully you do at least some testing during development.

if __name__ == "__main__":
pg = PrimesGenerator()
print("Primes up to 0: ", pg.get_primes_up_to(0))
print("Primes up to 1: ", pg.get_primes_up_to(1))
print("Primes up to 2: ", pg.get_primes_up_to(2))
print("Primes up to 3: ", pg.get_primes_up_to(3))
print("Primes up to 4: ", pg.get_primes_up_to(4))
print("Primes up to 5: ", pg.get_primes_up_to(5))
print("Primes up to 6: ", pg.get_primes_up_to(6))
print("Primes up to 20: ", pg.get_primes_up_to(20))

But you have to check the output:

Primes up to 0: []
Primes up to 1: []
Primes up to 2: [2]
Primes up to 3: [2, 3]
Primes up to 4: [2, 3]
Primes up to 5: [2, 3, 5]
Primes up to 6: [2, 3, 5]
Primes up to 20: [2, 3, 5, 7, 11, 13, 17, 19]
Primes up to 100: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
>>>

Automated tests: F.I.R.S.T.

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 10 / 25

Automated tests should be

Fast. If they are not fast, you will not run them often. If you will not run them often,
you will not discover bugs in time.

Automated tests: F.I.R.S.T.

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 10 / 25

Automated tests should be

Fast. If they are not fast, you will not run them often. If you will not run them often,
you will not discover bugs in time.

Independent. The test should be able to run in isolation and in any order. If they are
not independent, a bug in a single test will trigger a series of bugs in other tests.
Finding the bug will be harder.

Automated tests: F.I.R.S.T.

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 10 / 25

Automated tests should be

Fast. If they are not fast, you will not run them often. If you will not run them often,
you will not discover bugs in time.

Independent. The test should be able to run in isolation and in any order. If they are
not independent, a bug in a single test will trigger a series of bugs in other tests.
Finding the bug will be harder.

Repeatable. Anybody should be able to repeat the tests anywhere with the same
results.

Automated tests: F.I.R.S.T.

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 10 / 25

Automated tests should be

Fast. If they are not fast, you will not run them often. If you will not run them often,
you will not discover bugs in time.

Independent. The test should be able to run in isolation and in any order. If they are
not independent, a bug in a single test will trigger a series of bugs in other tests.
Finding the bug will be harder.

Repeatable. Anybody should be able to repeat the tests anywhere with the same
results.

Self-validating. The tests should either pass or fail. You shouldn’t be forced to parse
some textual output of results to see if the test passed, otherwise you will not want
to run the tests so often.

Automated tests: F.I.R.S.T.

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 10 / 25

Automated tests should be

Fast. If they are not fast, you will not run them often. If you will not run them often,
you will not discover bugs in time.

Independent. The test should be able to run in isolation and in any order. If they are
not independent, a bug in a single test will trigger a series of bugs in other tests.
Finding the bug will be harder.

Repeatable. Anybody should be able to repeat the tests anywhere with the same
results.

Self-validating. The tests should either pass or fail. You shouldn’t be forced to parse
some textual output of results to see if the test passed, otherwise you will not want
to run the tests so often.

Timely. The tests should be written in time, ideally before the production code. If you
write them after the production code, the code is often hard to test. If writing the
tests is hard, you will not want to write them.

Doctest module

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 11 / 25

✔ you have already seen it during lectures and labs

✔ special to Python (correct me if I am wrong)

✔ very handy for simple tests with little setup and cleanup, unnatural for more
complex tests

class PrimesGenerator:
"""Prime numbers generator.

>>> pg = PrimesGenerator()
>>> pg.get_primes_up_to(1)
[]
>>> pg.get_primes_up_to(2)
[2]
>>> pg.get_primes_up_to(3)
[2, 3]
>>> pg.get_primes_up_to(4)
[2, 3]
>>> pg.get_primes_up_to(5)
[2, 3, 5]
>>> pg.get_primes_up_to(7)
[2, 3, 5, 7]
>>> pg.get_primes_up_to(20)
[2, 3, 5, 7, 11, 13, 17, 19]
"""
...

if __name__ == "__main__":
import doctest
doctest.testmod()

xUnit Framework

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 12 / 25

✔ Standard unit testing framework

✔ Implemented in many languages (learn it once, use it anywhere)

✔ Python implementation: module unittest.

xUnit Framework

Motivation

Testing

Testing

Programmer’s testing

Automated tests:
F.I.R.S.T.

Doctest module

xUnit Framework

Test-Driven
Development

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 12 / 25

✔ Standard unit testing framework

✔ Implemented in many languages (learn it once, use it anywhere)

✔ Python implementation: module unittest.

import unittest
from primes3 import PrimesGenerator

class PrimesGeneratorTest(unittest.TestCase):

known_values = ((0, []),
(1, []),
(2, [2]),
(3, [2,3]),
(4, [2,3]),
(5, [2,3,5]),
(7, [2,3,5,7]),
(20, [2,3,5,7,11,13,17,19]))

def setUp(self):
self.pg = PrimesGenerator()

def test_get_primes_up_to(self):
for limit, expected in self.known_values:

observed = self.pg.get_primes_up_to(limit)
self.assertEqual(observed, expected)

...

if __name__==’__main__’:
unittest.main()

Test-Driven Development

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 13 / 25

TDD: Test-Driven Development

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 14 / 25

Three rules of TDD:

1. Do not write any production code until you have first written a failing unit test.

2. Do not write more of a unit test than is sufficient to fail, and not compiling is
failing.

3. Do not write more production code than is sufficient to pass the currently failing
unit test.

TDD: Test-Driven Development

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 14 / 25

Three rules of TDD:

1. Do not write any production code until you have first written a failing unit test.

2. Do not write more of a unit test than is sufficient to fail, and not compiling is
failing.

3. Do not write more production code than is sufficient to pass the currently failing
unit test.

The result of these rules:

✔ a very short cycle in which you alternate between

✘ the role of a customer who says what shall be done (you write a test), and

✘ the role of a programmer who says how it shall be done (you write or modify
production code).

✔ Tests and production code are written together (tests a few seconds sooner).

✔ Tests then cover the whole production code!

TDD Example

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 15 / 25

Create a function that factorizes a natural number into a product of prime factors.

✔ Input: the number to be factorized

✔ Output: a list of primes whose product is equal to the given number

TDD Example

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 15 / 25

Create a function that factorizes a natural number into a product of prime factors.

✔ Input: the number to be factorized

✔ Output: a list of primes whose product is equal to the given number

How would you proceed? Suppose we already have class PrimeGenerator. . .

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

Create an empty module, factorization.py

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

Create an empty module, factorization.py After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: cannot import name factorize

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

Create an empty module, factorization.py After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: cannot import name factorize

Update factorization.py:

def factorize():
pass

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

Create an empty module, factorization.py After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: cannot import name factorize

Update factorization.py:

def factorize():
pass

After executing test_factorize.py:

--- Žádný výstup, kód bez chyby. ---

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

Create an empty module, factorization.py After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: cannot import name factorize

Update factorization.py:

def factorize():
pass

After executing test_factorize.py:

--- Žádný výstup, kód bez chyby. ---

Update test_factorize.py

import unittest
from factorization import factorize

class FactorizeTest(unittest.TestCase):
pass

if __name__=="__main__":
unittest.main()

TDD Example: Initial phase

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 16 / 25

Create the test file, test_factorize.py

import unittest
from factorization import factorize

After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

Create an empty module, factorization.py After executing test_factorize.py:

Traceback (most recent call last):
File "<string>", line 2, in <fragment>

builtins.ImportError: cannot import name factorize

Update factorization.py:

def factorize():
pass

After executing test_factorize.py:

--- Žádný výstup, kód bez chyby. ---

Update test_factorize.py

import unittest
from factorization import factorize

class FactorizeTest(unittest.TestCase):
pass

if __name__=="__main__":
unittest.main()

After executing test_factorize.py:

--
Ran 0 tests in 0.000s

OK
builtins.SystemExit: False

TDD Example: Factorize number 2

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 17 / 25

Update test_factorize.py

class FactorizeTest(unittest.TestCase):

def test_two(self):
observed = factorize(2)
self.assertEqual(observed, [2])

TDD Example: Factorize number 2

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 17 / 25

Update test_factorize.py

class FactorizeTest(unittest.TestCase):

def test_two(self):
observed = factorize(2)
self.assertEqual(observed, [2])

After executing test_factorize.py:

E
==
ERROR: test_one (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 7, in test_one
TypeError: factorize() takes no arguments (1 given)
--
Ran 1 test in 0.000s

Update factorization.py:

def factorize(multiple):
pass

TDD Example: Factorize number 2

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 17 / 25

Update test_factorize.py

class FactorizeTest(unittest.TestCase):

def test_two(self):
observed = factorize(2)
self.assertEqual(observed, [2])

After executing test_factorize.py:

E
==
ERROR: test_one (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 7, in test_one
TypeError: factorize() takes no arguments (1 given)
--
Ran 1 test in 0.000s

Update factorization.py:

def factorize(multiple):
pass

F
==
FAIL: test_one (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 8, in test_one
AssertionError: None != [2]
--
Ran 1 test in 0.000s

TDD Example: Factorize number 2

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 17 / 25

Update test_factorize.py

class FactorizeTest(unittest.TestCase):

def test_two(self):
observed = factorize(2)
self.assertEqual(observed, [2])

After executing test_factorize.py:

E
==
ERROR: test_one (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 7, in test_one
TypeError: factorize() takes no arguments (1 given)
--
Ran 1 test in 0.000s

Update factorization.py:

def factorize(multiple):
pass

F
==
FAIL: test_one (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 8, in test_one
AssertionError: None != [2]
--
Ran 1 test in 0.000s

Update factorization.py:

def factorize(multiple):
return [2]

TDD Example: Factorize number 2

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 17 / 25

Update test_factorize.py

class FactorizeTest(unittest.TestCase):

def test_two(self):
observed = factorize(2)
self.assertEqual(observed, [2])

After executing test_factorize.py:

E
==
ERROR: test_one (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 7, in test_one
TypeError: factorize() takes no arguments (1 given)
--
Ran 1 test in 0.000s

Update factorization.py:

def factorize(multiple):
pass

F
==
FAIL: test_one (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 8, in test_one
AssertionError: None != [2]
--
Ran 1 test in 0.000s

Update factorization.py:

def factorize(multiple):
return [2]

.
--
Ran 1 test in 0.000s

TDD Example: Factorize number 3

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 18 / 25

Update test_factorize.py

def test_three(self):
observed = factorize(3)
self.assertEqual(observed, [3])

TDD Example: Factorize number 3

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 18 / 25

Update test_factorize.py

def test_three(self):
observed = factorize(3)
self.assertEqual(observed, [3])

After executing test_factorize.py:

F.
==
FAIL: test_three (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 12, in test_three
AssertionError: Lists differ: [2] != [3]

First differing element 0:
2
3

- [2]
+ [3]

--
Ran 2 tests in 0.016s

Update factorization.py:

def factorize(multiple):
return [multiple]

TDD Example: Factorize number 3

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 18 / 25

Update test_factorize.py

def test_three(self):
observed = factorize(3)
self.assertEqual(observed, [3])

After executing test_factorize.py:

F.
==
FAIL: test_three (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 12, in test_three
AssertionError: Lists differ: [2] != [3]

First differing element 0:
2
3

- [2]
+ [3]

--
Ran 2 tests in 0.016s

Update factorization.py:

def factorize(multiple):
return [multiple]

..
--
Ran 2 tests in 0.000s

TDD Example: Factorize number 4

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 19 / 25

Update test_factorize.py

def test_four(self):
observed = factorize(4)
self.assertEqual(observed, [2,2])

TDD Example: Factorize number 4

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 19 / 25

Update test_factorize.py

def test_four(self):
observed = factorize(4)
self.assertEqual(observed, [2,2])

After executing test_factorize.py:

F..
==
FAIL: test_four (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 16, in test_four
AssertionError: Lists differ: [4] != [2, 2]
[...snip...]
--
Ran 3 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
while multiple % 2 == 0:
factors.append(2)
multiple /= 2

return factors

TDD Example: Factorize number 4

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 19 / 25

Update test_factorize.py

def test_four(self):
observed = factorize(4)
self.assertEqual(observed, [2,2])

After executing test_factorize.py:

F..
==
FAIL: test_four (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 16, in test_four
AssertionError: Lists differ: [4] != [2, 2]
[...snip...]
--
Ran 3 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
while multiple % 2 == 0:
factors.append(2)
multiple /= 2

return factors

.F.
==
FAIL: test_three (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 12, in test_three
AssertionError: Lists differ: [] != [3]
[...snip...]
--
Ran 3 tests in 0.016s

TDD Example: Factorize number 4

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 19 / 25

Update test_factorize.py

def test_four(self):
observed = factorize(4)
self.assertEqual(observed, [2,2])

After executing test_factorize.py:

F..
==
FAIL: test_four (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 16, in test_four
AssertionError: Lists differ: [4] != [2, 2]
[...snip...]
--
Ran 3 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
while multiple % 2 == 0:
factors.append(2)
multiple /= 2

return factors

.F.
==
FAIL: test_three (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 12, in test_three
AssertionError: Lists differ: [] != [3]
[...snip...]
--
Ran 3 tests in 0.016s

Update factorization.py:

def factorize(multiple):
factors = []
while multiple % 2 == 0:
factors.append(2)
multiple /= 2

if multiple != 1:
factors.append(multiple)

return factors

TDD Example: Factorize number 4

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 19 / 25

Update test_factorize.py

def test_four(self):
observed = factorize(4)
self.assertEqual(observed, [2,2])

After executing test_factorize.py:

F..
==
FAIL: test_four (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 16, in test_four
AssertionError: Lists differ: [4] != [2, 2]
[...snip...]
--
Ran 3 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
while multiple % 2 == 0:
factors.append(2)
multiple /= 2

return factors

.F.
==
FAIL: test_three (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 12, in test_three
AssertionError: Lists differ: [] != [3]
[...snip...]
--
Ran 3 tests in 0.016s

Update factorization.py:

def factorize(multiple):
factors = []
while multiple % 2 == 0:
factors.append(2)
multiple /= 2

if multiple != 1:
factors.append(multiple)

return factors

...
--
Ran 3 tests in 0.000s

TDD Example: Factorize number 5

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 20 / 25

Update test_factorize.py

def test_five(self):
observed = factorize(5)
self.assertEqual(observed, [5])

TDD Example: Factorize number 5

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 20 / 25

Update test_factorize.py

def test_five(self):
observed = factorize(5)
self.assertEqual(observed, [5])

After executing test_factorize.py:

....
--
Ran 4 tests in 0.000s

TDD Example: Factorize number 6

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 21 / 25

Update test_factorize.py

def test_six(self):
observed = factorize(6)
self.assertEqual(observed, [2,3])

TDD Example: Factorize number 6

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 21 / 25

Update test_factorize.py

def test_six(self):
observed = factorize(6)
self.assertEqual(observed, [2,3])

After executing test_factorize.py:

.....
--
Ran 5 tests in 0.000s

TDD Example: Factorize number 6

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 21 / 25

Update test_factorize.py

def test_six(self):
observed = factorize(6)
self.assertEqual(observed, [2,3])

After executing test_factorize.py:

.....
--
Ran 5 tests in 0.000s

Test for factorizing number 7 is left out, it is the same case as for numbers 3 and 5.

TDD Example: Factorize number 8

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 22 / 25

Update test_factorize.py

def test_eight(self):
observed = factorize(8)
self.assertEqual(observed, [2,2,2])

TDD Example: Factorize number 8

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 22 / 25

Update test_factorize.py

def test_eight(self):
observed = factorize(8)
self.assertEqual(observed, [2,2,2])

After executing test_factorize.py:

......
--
Ran 6 tests in 0.000s

TDD Example: Factorize number 9

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 23 / 25

Update test_factorize.py

def test_nine(self):
observed = factorize(9)
self.assertEqual(observed, [3,3])

TDD Example: Factorize number 9

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 23 / 25

Update test_factorize.py

def test_nine(self):
observed = factorize(9)
self.assertEqual(observed, [3,3])

After executing test_factorize.py:

...F...
==
FAIL: test_nine (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 32, in test_nine
AssertionError: Lists differ: [9] != [3, 3]
[...snip...]
--
Ran 7 tests in 0.000s

TDD Example: Factorize number 9

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 23 / 25

Update test_factorize.py

def test_nine(self):
observed = factorize(9)
self.assertEqual(observed, [3,3])

After executing test_factorize.py:

...F...
==
FAIL: test_nine (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 32, in test_nine
AssertionError: Lists differ: [9] != [3, 3]
[...snip...]
--
Ran 7 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
for factor in range(2,multiple+1):
while multiple % factor == 0:

factors.append(factor)
multiple /= factor

return factors

TDD Example: Factorize number 9

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 23 / 25

Update test_factorize.py

def test_nine(self):
observed = factorize(9)
self.assertEqual(observed, [3,3])

After executing test_factorize.py:

...F...
==
FAIL: test_nine (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 32, in test_nine
AssertionError: Lists differ: [9] != [3, 3]
[...snip...]
--
Ran 7 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
for factor in range(2,multiple+1):
while multiple % factor == 0:

factors.append(factor)
multiple /= factor

return factors

.......
--
Ran 7 tests in 0.015s

TDD Example: Factorize number 9

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 23 / 25

Update test_factorize.py

def test_nine(self):
observed = factorize(9)
self.assertEqual(observed, [3,3])

After executing test_factorize.py:

...F...
==
FAIL: test_nine (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 32, in test_nine
AssertionError: Lists differ: [9] != [3, 3]
[...snip...]
--
Ran 7 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
for factor in range(2,multiple+1):
while multiple % factor == 0:

factors.append(factor)
multiple /= factor

return factors

.......
--
Ran 7 tests in 0.015s

✔ Are you able to come up with another failing test?

TDD Example: Factorize number 9

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 23 / 25

Update test_factorize.py

def test_nine(self):
observed = factorize(9)
self.assertEqual(observed, [3,3])

After executing test_factorize.py:

...F...
==
FAIL: test_nine (__main__.FactorizeTest)
--
Traceback (most recent call last):

File "<wingdb_compile>", line 32, in test_nine
AssertionError: Lists differ: [9] != [3, 3]
[...snip...]
--
Ran 7 tests in 0.000s

Update factorization.py:

def factorize(multiple):
factors = []
for factor in range(2,multiple+1):
while multiple % factor == 0:

factors.append(factor)
multiple /= factor

return factors

.......
--
Ran 7 tests in 0.015s

✔ Are you able to come up with another failing test?

✔ Note that we actually do not need any PrimeGenerator; if we decided to use it, the code may be
more complex!

More complex case: class Game

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 24 / 25

Typical use of class Game:

>>> g = Game(playerA, playerB, payoff_matrix, n_iterations)
>>> g.run()
>>> g.get_players_payoffs()

What are the class responsibilities we want to test?

More complex case: class Game

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 24 / 25

Typical use of class Game:

>>> g = Game(playerA, playerB, payoff_matrix, n_iterations)
>>> g.run()
>>> g.get_players_payoffs()

What are the class responsibilities we want to test?

✔ Method get_players_payoffs() returns (None,None) before executing method run().

More complex case: class Game

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 24 / 25

Typical use of class Game:

>>> g = Game(playerA, playerB, payoff_matrix, n_iterations)
>>> g.run()
>>> g.get_players_payoffs()

What are the class responsibilities we want to test?

✔ Method get_players_payoffs() returns (None,None) before executing method run().

✔ Method run() calls methods move() and record_opponents_move() of both Players
exactly n_iterations times.

✔ Method run() calls methods move() and record_opponents_move() alternatively, it
begins with method move().

✔ Method run() is fair to both the Players, i.e. it does not pass the current move of
one player to the other player.

✔ . . .

TDD: Conclusions

Motivation

Testing

Test-Driven
Development

TDD: Test-Driven
Development

TDD Example

TDD 1

TDD 2

TDD 3

TDD 4

TDD 5

TDD 6

TDD 8

TDD 9
More complex case: class
Game

TDD: Conclusions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 25 / 25

Tests

✔ serve as specification by example.

✔ serve as documentation.

✔ help to understand the algorithm.

✔ help to prevent unnecessary complexity of the code.

✔ determine when we are “Done.”

✔ help to prevent new bugs when modifying the code.

	Motivation
	Feedback from the first lab test
	Test it in Python shell
	Test it when you run the module
	Test it with the help of testing tools

	Testing
	Testing
	Programmer's testing
	Automated tests: F.I.R.S.T.
	Doctest module
	xUnit Framework

	Test-Driven Development
	TDD: Test-Driven Development
	TDD Example
	TDD 1
	TDD 2
	TDD 3
	TDD 4
	TDD 5
	TDD 6
	TDD 8
	TDD 9
	More complex case: class Game
	TDD: Conclusions

