
P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 1 / 13

AE4B99RPH: Problem Solving and Games

Clean code.

Petr Pošík

Katedra kybernetiky

ČVUT FEL

Clean Code

Based on
Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship,

Prentice Hall, 2008.

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 2 / 13

Which of the following codes is cleaner? Why?

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 3 / 13

Two implementations of the same algorithm:

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value >= 2: # There are some primes

Initialize the list (incl. 0)

f = [True for i in range(max_value+1)]
Get rid of the known non-primes

f[0] = f[1] = False
Run the sieve

for i in range(2, len(f)):
if f[i]: # i is still a candidate

mark its multiples as not prime

for j in range(2*i, len(f), i):

f[j] = False
Find the primes and put them in a list

primes = [i for i in range(len(f)) if f[i]]

return primes

else: # max_value < 2

return list() # no primes, return empty list

PRIME = True
NONPRIME = False

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value < 2:

return []

else:
candidates = init_integers_up_to(max_value)

mark_non_primes(candidates)

return collect_remaining(candidates)

def init_integers_up_to(max_value):
return [PRIME for i in range(max_value+1)]

def mark_non_primes(candidates):
Mark 0 and 1, they are not primes.

candidates[0] = candidates[1] = NONPRIME

for number in range(2, len(candidates)):
if candidates[number] == PRIME:

mark_as_not_prime_multiples_of(number, candidates

def mark_as_not_prime_multiples_of(number, candidates):

for multiple in range(2*number, len(candidates), number

candidates[multiple] = NONPRIME

def collect_remaining(candidates):
primes = [i for i in range(len(candidates))

if candidates[i]==PRIME]

return primes

What is “clean code”?

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 4 / 13

Bjarne Stroustrup, author of C++ language and author of “The C++ Programming
Language” book:

I like my code to be elegant and efficient. The logic should be
straightforward to make it hard for bugs to hide, the dependencies
minimal to ease maintenance, error handling complete according to an
articulated strategy, and performance close to optimal so as not to tempt
people to make the code messy with unprincipled optimizations. Clean
code does one thing well.

What is “clean code”?

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 4 / 13

Bjarne Stroustrup, author of C++ language and author of “The C++ Programming
Language” book:

I like my code to be elegant and efficient. The logic should be
straightforward to make it hard for bugs to hide, the dependencies
minimal to ease maintenance, error handling complete according to an
articulated strategy, and performance close to optimal so as not to tempt
people to make the code messy with unprincipled optimizations. Clean
code does one thing well.

Grady Booch, author of “Object Oriented Analysis and Design with Applications” book:

Clean code is simple and direct. Clean code reads like well-written
prose. Clean code never obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines of control.

What is “clean code”?

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 4 / 13

Bjarne Stroustrup, author of C++ language and author of “The C++ Programming
Language” book:

I like my code to be elegant and efficient. The logic should be
straightforward to make it hard for bugs to hide, the dependencies
minimal to ease maintenance, error handling complete according to an
articulated strategy, and performance close to optimal so as not to tempt
people to make the code messy with unprincipled optimizations. Clean
code does one thing well.

Grady Booch, author of “Object Oriented Analysis and Design with Applications” book:

Clean code is simple and direct. Clean code reads like well-written
prose. Clean code never obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines of control.

Dave Thomas, OTI founder (acquired by IBM in 1996), Eclipse godfather:

Clean code can be read, and enhanced by a developer other than its
original author. It has unit and acceptance tests. It has meaningful
names. It provides one way rather than many ways for doing one thing.
It has minimal dependencies, which are explicitly defined, and provides
a clear and minimal API.

Clean code in practice

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 5 / 13

The only valid measurement of code quality: WTFs/minute

Meaningful names

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 6 / 13

✔ It is very hard to come up with meaningful names! Put sufficient effort in it.

✔ Do not be affraid to change the name if you come up with better!

✔ Good name reveals author’s intention.
If a name requires a comment, it does not reveal its intention. Compare:

✘ self.d = 0 # Elapsed time in days

✘ self.elapsed_time_in_days = 0

✔ Class names: nouns (with adjectives):

✘ Customer, WikiPage, AddressParser, Filter, StupidFilter, Corpus, TrainingCorpus

✔ Function/method names: verbs (with objects):

✘ post_payment, delete_page, save, train, test, get_email

✔ Single word for single concept! Do not use the same word for more than one
purpose.

✔ Don’t be affraid of long names!

✘ Long descriptive name is better than a long comment.

✘ The larger the variable scope, the longer and more describing the variable
name should be.

✔ Do not use magic numbers in the code! Use named constants!

The Sieve of Eratosthenes: meaningful names

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 7 / 13

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value >= 2: # There are some primes

Initialize the list (incl. 0)

f = [True for i in range(max_value+1)]
Get rid of the known non-primes

f[0] = f[1] = False
Run the sieve

for i in range(2, len(f)):
if f[i]: # i is still a candidate

mark its multiples as not prime

for j in range(2*i, len(f), i):

f[j] = False
Find the primes and put them in a list

primes = [i for i in range(len(f)) if f[i]]

return primes

else: # max_value < 2

return list() # no primes, return empty list

The Sieve of Eratosthenes: meaningful names

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 7 / 13

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value >= 2: # There are some primes

Initialize the list (incl. 0)

f = [True for i in range(max_value+1)]
Get rid of the known non-primes

f[0] = f[1] = False
Run the sieve

for i in range(2, len(f)):
if f[i]: # i is still a candidate

mark its multiples as not prime

for j in range(2*i, len(f), i):

f[j] = False
Find the primes and put them in a list

primes = [i for i in range(len(f)) if f[i]]

return primes

else: # max_value < 2

return list() # no primes, return empty list

PRIME = True
NONPRIME = False

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value >= 2: # There are some primes

Initialize the list (incl. 0)

candidates = [

PRIME for i in range(max_value+1)]
Get rid of the known non-primes

candidates[0] = candidates[1] = NONPRIME

Run the sieve

for number in range(2, len(candidates)):
if candidates[number]==PRIME:

mark its multiples as not prime

for multiple in \

range(2*number, len(candidates), number):

candidates[multiple] = NONPRIME

Find the primes and put them in a list

primes = [i for i in range(len(candidates))
if candidates[i]==PRIME]

return primes

else: # max_value < 2

return list() # no primes, return empty list

Other meaningful names ahead!!!

Comments

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 8 / 13

Clean code (almost) does not need comments!

✔ Comments compensate for our failure to express ourselves in the programming
language. Compare:

Check to see if the employee is eligible for full benefits

if (employee.flags & HOURLY_FLAG) and (employee.age > 65):

versus

if employee.is_eligible_for_full_benefits():

✔ Comments lie! Not always, not intentionally, but too often.

✔ Inaccurate comments are worse then no comments!

✔ Comments cannot repair bad code.

✔ Good comments:

✘ little explanation, little clarification

✘ emphasis, warning against consequences

✘ TODOs

✔ Bad comments:

✘ old (invalid), unimportant, unsuitable, redundant, or misleading comments

✘ comments “because you have to comment”

✘ commented-out code

✘ non-local or irrelevant information

The Sieve of Eratosthenes: comments

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 9 / 13

This function generates prime numbers up to

a user specified maximum. The algorithm

used is the Sieve of Eratosthenes.

#

Eratosthenes of Cyrene, b. c. 276 BC,

Cyrene, Libya -- d. c. 194 BC, Alexandria.

The first man to calculate the circumference

of the Earth. Also known for working on

calendars with leap years and ran

the library at Alexandria.

#

The algorithm is quite simple.

Given an array of integers starting at 2,

cross out all multiples of 2.

Find the next uncrossed integer,

and cross out all of its multiples.

Repeat until you have passed

the maximum value.

#

@author hugo

@version 1

The Sieve of Eratosthenes: comments

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 9 / 13

This function generates prime numbers up to

a user specified maximum. The algorithm

used is the Sieve of Eratosthenes.

#

Eratosthenes of Cyrene, b. c. 276 BC,

Cyrene, Libya -- d. c. 194 BC, Alexandria.

The first man to calculate the circumference

of the Earth. Also known for working on

calendars with leap years and ran

the library at Alexandria.

#

The algorithm is quite simple.

Given an array of integers starting at 2,

cross out all multiples of 2.

Find the next uncrossed integer,

and cross out all of its multiples.

Repeat until you have passed

the maximum value.

#

@author hugo

@version 1

This function generates prime numbers up to

a user specified maximum. The algorithm

used is the Sieve of Eratosthenes.

Given an array of integers starting at 2,

cross out all multiples of 2.

Find the next uncrossed integer,

and cross out all of its multiples.

Repeat until you have passed

the maximum value.

#

@author hugo

@version 1

We will get rid of other comments in a while!

Functions and methods

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 10 / 13

✔ Functions shall be short! (And even shorter!)

✔ Function shall do a single thing and do it well. (And without side effects.)

✔ Ideally, functions shall be shorter than 5 lines. In that case:

✘ they usually do exactly 1 thing.

✘ they can have precise and meaningful name.

✘ they cannot contain nested if, for, . . . commands.

✘ the blocks inside if, for, . . . commands can be only a single line long.

✔ Short functions allow for testing individual parts of the program!

✔ Sections inside functions/methods:

✘ A clear indication that the function/method does not do a single thing, and
should be split up.

✔ Function/method parameters:

✘ Keep their number small! 0, 1, 2, exceptionally 3.

✘ Create the function/method name so that it evokes the order of arguments.

✘ Boolean parameters usually suggest that the function/method does not do a
single thing. Split it up!

The Sieve of Eratosthenes: functions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 11 / 13

PRIME = True
NONPRIME = False

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value >= 2: # There are some primes

Initialize the list (incl. 0)

candidates = [

PRIME for i in range(max_value+1)]
Get rid of the known non-primes

candidates[0] = candidates[1] = NONPRIME

Run the sieve

for number in range(2, len(candidates)):
if candidates[number]==PRIME:

mark its multiples as not prime

for multiple in \

range(2*number, len(candidates), number):

candidates[multiple] = NONPRIME

Find the primes and put them in a list

primes = [i for i in range(len(candidates))
if candidates[i]==PRIME]

return primes

else: # max_value < 2

return list() # no primes, return empty list

The Sieve of Eratosthenes: functions

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 11 / 13

PRIME = True
NONPRIME = False

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value >= 2: # There are some primes

Initialize the list (incl. 0)

candidates = [

PRIME for i in range(max_value+1)]
Get rid of the known non-primes

candidates[0] = candidates[1] = NONPRIME

Run the sieve

for number in range(2, len(candidates)):
if candidates[number]==PRIME:

mark its multiples as not prime

for multiple in \

range(2*number, len(candidates), number):

candidates[multiple] = NONPRIME

Find the primes and put them in a list

primes = [i for i in range(len(candidates))
if candidates[i]==PRIME]

return primes

else: # max_value < 2

return list() # no primes, return empty list

PRIME = True
NONPRIME = False

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value < 2:

return []

else:
candidates = init_integers_up_to(max_value)

mark_non_primes(candidates)

return collect_remaining(candidates)

def init_integers_up_to(max_value):
return [PRIME for i in range(max_value+1)]

def mark_non_primes(candidates):
Mark 0 and 1, they are not primes.

candidates[0] = candidates[1] = NONPRIME

for number in range(2, len(candidates)):
if candidates[number] == PRIME:

mark_as_not_prime_multiples_of(number, candidates

def mark_as_not_prime_multiples_of(number, candidates):

for multiple in range(2*number, len(candidates), number

candidates[multiple] = NONPRIME

def collect_remaining(candidates):
primes = [i for i in range(len(candidates))

if candidates[i]==PRIME]

return primes

The Sieve of Eratosthenes: as a class?

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 12 / 13

PRIME = True
NONPRIME = False

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value < 2:

return []

else:
candidates = init_integers_up_to(max_value)

mark_non_primes(candidates)

return collect_remaining(candidates)

def init_integers_up_to(max_value):
return [PRIME for i in range(max_value+1)]

def mark_non_primes(candidates):
Mark 0 and 1, they are not primes.

candidates[0] = candidates[1] = NONPRIME

for number in range(2, len(candidates)):
if candidates[number] == PRIME:

mark_as_not_prime_multiples_of(number, candidates)

def mark_as_not_prime_multiples_of(number, candidates):

for multiple in range(2*number, len(candidates), number):

candidates[multiple] = NONPRIME

def collect_remaining(candidates):
primes = [i for i in range(len(candidates))

if candidates[i]==PRIME]

The Sieve of Eratosthenes: as a class?

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 12 / 13

PRIME = True
NONPRIME = False

def generate_primes_up_to(max_value):
"""Find primes up to the max_value

using the Sieve of Eratosthenes.

"""

if max_value < 2:

return []

else:
candidates = init_integers_up_to(max_value)

mark_non_primes(candidates)

return collect_remaining(candidates)

def init_integers_up_to(max_value):
return [PRIME for i in range(max_value+1)]

def mark_non_primes(candidates):
Mark 0 and 1, they are not primes.

candidates[0] = candidates[1] = NONPRIME

for number in range(2, len(candidates)):
if candidates[number] == PRIME:

mark_as_not_prime_multiples_of(number, candidates)

def mark_as_not_prime_multiples_of(number, candidates):

for multiple in range(2*number, len(candidates), number):

candidates[multiple] = NONPRIME

def collect_remaining(candidates):
primes = [i for i in range(len(candidates))

if candidates[i]==PRIME]

PRIME = True
NONPRIME = False

class PrimesGenerator:
"""Prime numbers generator."""

def __init__(self):
self.candidates = []

self.max = None

def get_primes_up_to(self, max_value):

"""Return list of primes up to the max_value."""

if max_value < 2: return []

self.max = max_value+1

self.init_candidates_up_to_max_value()
self.mark_non_prime_candidates()
return self.collect_remaining_candidates()

def init_candidates_up_to_max_value(self):
self.candidates = [PRIME for i in range(self.max)]

def mark_non_prime_candidates(self):
Cross out 0 and 1, they are not primes.

self.candidates[0] = self.candidates[1] = NONPRIME

for number in range(2, int(self.max**0.5)+1):
if self.candidates[number]==PRIME:

self.mark_as_not_prime_multiples_of(number

def mark_as_not_prime_multiples_of(self, number):

for multiple in range(2*number, self.max, number):

self.candidates[multiple] = NONPRIME

def collect_remaining_candidates(self):
return [i for i in range(self.max)

if self.candidates[i]==PRIME]

Summary

Clean Code
Which of the following
codes is cleaner? Why?

What is “clean code”?

Clean code in practice

Meaningful names

The Sieve of
Eratosthenes:
meaningful names

Comments
The Sieve of
Eratosthenes: comments

Functions and methods
The Sieve of
Eratosthenes: functions
The Sieve of
Eratosthenes: as a class?

Summary

P. Pošík c© 2013 AE4B99RPH: Problem Solving and Games – 13 / 13

✔ Clean code is a subjective concept, yet:

✘ there are some generally accepted features of clean code, and

✘ all programmers shall strive for it.

✔ Clean code shall be foremost readable (almost like sentences in natural language).

✔ 80 % of clean code are well chosen names!

✔ Suitable names can be chosen if the functions are short!

✔ If your program contains repeated pieces of almost the same code, it is almost
always possible to define it as a new function/method.

	Clean Code
	Which of the following codes is cleaner? Why?
	What is ``clean code''?
	Clean code in practice
	Meaningful names
	The Sieve of Eratosthenes: meaningful names
	Comments
	The Sieve of Eratosthenes: comments
	Functions and methods
	The Sieve of Eratosthenes: functions
	The Sieve of Eratosthenes: as a class?
	Summary

