Principal Component Analysis

Lecturer:
Jiří Matas
Authors:
Ondřej Drbohlav, Jiří Matas
Centre for Machine Perception
Czech Technical University, Prague http://cmp.felk.cvut.cz

1.1.2017

- Alternative name: Karhunene Loeve transform
- Used for: data approximation, identifying sources of variance in the data

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Let the data be $\left\{\mathbf{x}_{i} \mid i=1,2, \ldots, N\right\}$, with sample mean $\overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$.
Let us find the unit vector \mathbf{u}_{1} to project to such that the variance $J\left(\mathbf{u}_{1}\right)$ of the projected data is maximized. The projection $\mathbf{x}_{n}^{(\mathrm{p})}$ of an \mathbf{x}_{n} to one-dimensional subspace generated by \mathbf{u}_{1} is given by

$$
\begin{equation*}
\mathbf{x}_{n}^{(\mathrm{p})}=\mathbf{u}_{1}\left(\mathbf{u}_{1}^{\mathrm{T}} \mathbf{x}_{n}\right), \quad \mathbf{u}_{1}^{\mathrm{T}} \mathbf{u}_{1}=1 \tag{1}
\end{equation*}
$$

The variance $J\left(\mathbf{u}_{1}\right)$ of projected data is

$$
\begin{equation*}
J\left(\mathbf{u}_{1}\right)=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{u}_{1}^{\mathrm{T}} \mathbf{x}_{n}-\mathbf{u}_{1}^{\mathrm{T}} \overline{\mathbf{x}}\right)^{2}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_{1}^{\mathrm{T}}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{\mathrm{T}} \mathbf{u}_{1}=\mathbf{u}_{1}^{\mathrm{T}} \mathbf{S} \mathbf{u}_{1} \tag{2}
\end{equation*}
$$

$$
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{\mathrm{T}}
$$

The Lagrangian of this optimization problem is

$$
\begin{equation*}
L\left(\mathbf{u}_{1}, \lambda_{1}\right)=J\left(\mathbf{u}_{1}\right)+\lambda_{1} \underbrace{\left(1-\mathbf{u}_{1}^{\mathrm{T}} \mathbf{u}_{1}\right)}_{\text {constraint }}=\mathbf{u}_{1}^{\mathrm{T}} \mathbf{S} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\mathrm{T}} \mathbf{u}_{1}\right), \tag{4}
\end{equation*}
$$

m p

1
2
3
4

The maximum is attained if λ_{1} is the largest eigenvalue of the matrix \mathbf{S} and \mathbf{u}_{1} is its corresponding eigenvector.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Recall: The variance of a 1-D projection is maximized when data are projected to the direction of the eigenvector of \mathbf{S} corresponding to the largest eigenvalue.
\mathbf{S} is symmetric and positive semidefinite. The eigenvectors corresponding to different eigenvalues are orthogonal.

It follows that the D-dimensional subspace maximizing the variance of the data is the one formed by D eigenvectors of \mathbf{S} corresponding the the D largest eigenvalues.

Note: "Variance" in the above sentence is the sum of variances in individual orthogonal directions. For a 2-D subspace,

$$
J\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\frac{1}{N} \sum_{n=1}^{N}\left[\mathbf{u}_{1}^{\mathrm{T}}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\right]^{2}+\left[\mathbf{u}_{2}^{\mathrm{T}}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\right]^{2}
$$

Consider the complete orthogonal basis $\left\{\mathbf{u}_{i}\right\}$ where $i=1, \ldots, D$. Thus

$$
\begin{equation*}
\mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=\delta_{i j} \tag{9}
\end{equation*}
$$

Each point can be represented as

$$
\begin{equation*}
\mathbf{x}_{n}=\sum_{i=1}^{D} \alpha_{n i} \mathbf{u}_{i} \tag{10}
\end{equation*}
$$

and

$$
\mathbf{x}_{n}=\sum_{i=1}^{D}\left(\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i}\right) \mathbf{u}_{i}
$$

mp

$$
\begin{equation*}
\tilde{\mathbf{x}}_{n}=\sum_{i=1}^{M}\left(\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i}\right) \mathbf{u}_{i}+\sum_{i=M+1}^{D} b_{i} \mathbf{u}_{i} \tag{12}
\end{equation*}
$$

$$
\tilde{\mathbf{x}}_{n}=\sum_{i=1}^{M}\left(\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i}\right) \mathbf{u}_{i}+\sum_{i=M+1}^{D} b_{i} \mathbf{u}_{i}
$$

$$
\begin{equation*}
b_{i}=\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_{i}, i=M+1, \ldots, D \tag{13}
\end{equation*}
$$

The task is to find the optimal orthonormal basis $\left\{\mathbf{u}_{i}\right\}$ which produces the best approximation measured by

$$
J\left(\left\{\mathbf{u}_{i}\right\}\right)=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\tilde{\mathbf{x}}_{n}\right\|^{2}
$$

The minimum error criterion is the complement of the maximum variance criterion, and thus the solution to the set $\left\{\mathbf{u}_{i}\right\}$ is the same.

m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Multivariate Normal Model and PCA

Recall that the ML estimate of the Multivariate Normal Distribution is defined by sample mean $\overline{\mathbf{x}}$ and sample covariance matrix \mathbf{S}. The model is

$$
\begin{equation*}
p(\mathbf{x} \mid \overline{\mathbf{x}}, \mathbf{S})=\frac{1}{\sqrt{|2 \pi \mathbf{S}|}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{\mathrm{T}} \mathbf{S}^{-1}(\mathbf{x}-\overline{\mathbf{x}})\right\} \tag{15}
\end{equation*}
$$

Denote stacked eigenvectors in descending order of their eigenvalues as \mathbf{U},

$$
\mathbf{U}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{D}\right\}
$$

mp

(15)	1
	2
	3
	4
	5
	6
	76
	8
	9
	10
	12
	13
	14
	15
	16
	17

Multivariate Normal Model and PCA

We approximate the data, as before, by projecting to first M eigenvectors. Thus, given data point \mathbf{x} we have

$$
\begin{equation*}
\mathbf{x}-\overline{\mathbf{x}}=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{M}, \delta_{M+1}, \ldots, \delta_{D}\right) \tag{19}
\end{equation*}
$$

Note that we only can compute $\delta_{1} . . \delta_{M}$, as often we don't or can't store all eigenvectors for computing all δ 's. However, we can easily compute

$$
\begin{equation*}
\Delta=\delta_{M+1}^{2}+\delta_{M+2}^{2}+\ldots+\delta_{D}^{2}=\|\mathbf{x}-\overline{\mathbf{x}}\|^{2}-\delta_{1}^{2}-\delta_{2}^{2}-\ldots-\delta_{M}^{2} \tag{20}
\end{equation*}
$$

and the exponent is then approximated as

1
2
3
4
5
6
7
8
9

$$
\begin{equation*}
-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{\mathrm{T}} \mathbf{S}^{-1}(\mathbf{x}-\overline{\mathbf{x}}) \simeq-\frac{1}{2}\left(\frac{\delta_{1}^{2}}{\lambda_{1}}+\frac{\delta_{2}^{2}}{\lambda_{2}}+\frac{\delta_{3}^{2}}{\lambda_{3}}+\ldots \frac{\delta_{M}^{2}}{\lambda_{M}}+\frac{\Delta}{\lambda}\right) \tag{21}
\end{equation*}
$$

11

Dimensionality of data can be high, and even higher than number of samples.
Consider dimensionality $D=1 \mathrm{M}$ (one million) and number of samples $N=100$. All analysis still applies, but it would be wasteful to compute eigenvectors for the $1 \mathrm{M} \times 1 \mathrm{M}$ matrix, as its rank will anyway be at most N (thus 100). Let us define \mathbf{X} to be a matrix formed by stacking all the data vectors (after having subtracted the mean from them): $\mathbf{X}=\left[\mathbf{x}_{1}-\overline{\mathbf{x}}, \mathbf{x}_{2}-\overline{\mathbf{x}}, \ldots, \mathbf{x}_{N}-\overline{\mathbf{x}}\right]$.

Thus,

$$
\begin{equation*}
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{\mathrm{T}}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\mathrm{T}} \tag{22}
\end{equation*}
$$

The characteristic equation is then

$$
\begin{equation*}
\frac{1}{N} \mathbf{X X}^{\mathrm{T}} \mathbf{u}=\lambda \mathbf{u} \tag{23}
\end{equation*}
$$

Left-multiplying both sides by \mathbf{X}^{T} gives

Thus, $\mathbf{X}^{\mathrm{T}} \mathbf{X}$, which is only 100×100, has exactly the same set of eigenvalues:

$$
\begin{equation*}
\frac{1}{N} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}=\lambda \mathbf{w} \tag{25}
\end{equation*}
$$

Left-multiplying now by \mathbf{X}, we get

$$
\begin{equation*}
\frac{1}{N} \mathbf{X} \mathbf{X}^{\mathrm{T}}(\mathbf{X w})=\lambda(\mathbf{X w}) \tag{26}
\end{equation*}
$$

Conclusion: If $D \gg N$, form the matrix $\mathbf{T}=\frac{1}{N} \mathbf{X}^{\mathrm{T}} \mathbf{X}$ and compute its eigenvalues λ 's and eigenvectors \mathbf{w}. Compute the eigenvectors of $\mathbf{S}=\frac{1}{N} \mathbf{X X}^{\mathrm{T}}$ as

$$
\begin{equation*}
\mathbf{v}=\frac{\mathbf{X} \mathbf{w}}{\|\mathbf{X} \mathbf{w}\|} \tag{27}
\end{equation*}
$$

m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

images of 38 subjects, each under 64 different illumination conditions:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

$m p$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

images of 38 subjects, each under 64 different illumination conditions. Thus, there is $38 \times 64=2432$ images in total. Each of them is a feature vector with
$m p$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Example 2 - Yale database (4/5)

mean

first 72 eigenvectors

Example 2 - Yale database (5/5)

Reconstruction of original vector using eigenvectors

mean and 50 evs

mean and 3 evs

mean and 100 evs

mean and 10 evs

$m p$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

