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Introduction

Alternative name: Karhunene Loeve transform

Used for: data approximation, identifying sources of variance in the data
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Maximum variance formulation (1/3) @

Let the data be {x; | i =1,2,..., N}, with sample mean X = %Zﬁ;l Xy, -

Let us find the unit vector u; to project to such that the variance J(u;) of the

(p)

projected data is maximized. The projection x;,” of an x,, to one-dimensional

subspace generated by u; is given by

x\P) = u; (ulx,), uiu; =1. (1)
The variance J(u;) of projected data is

N N
2 1 _ _
Z urx, —u;x) = N Z ul(x, — X)(xp, —X) up = ulSuy, (2)

n=1

where S is the normalized scatter matrix:

= = R — %) ©

n=1

N
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Maximum variance formulation (2/3) @

The Lagrangian of this optimization problem is

L(ug, A1) = J(ug) + A (1 - u?“@ =u;Suy + A\ (1 —ufw), (4)
con;c?aint

where A1 is the Lagrange multiplier. Taking the derivative w.r.t. the vector u; and
setting it to zero gives

a‘L(llla )\1)
8111

= SLI1 — )\1111 = O, (5)

and thus
Sul = )\1111 . (6)

This is the characteristic equation for the covariance matrix S. Any eigenvalue A; and
its corresponding eigenvector vy solves this equation, with variance J(u;) equal to:

J(u)) =uiSu; =ui Ajug = A . (7)

The maximum is attained if \; is the largest eigenvalue of the matrix S and u; is its
corresponding eigenvector.
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Example 1 - Iris dataset
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Data shown as crosses x. lris dataset: feature vectors are 4-dimensional, here
dimensions 2 and 3 used (petal length and sepal width).

Eigenvalues: A\; = 3.148, Ay = 0.153, eigenvectors U = |uy, uy|. Variance is
maximized when data are projected to direction u;.
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Maximum variance formulation (3/3) @

Recall: The variance of a 1-D projection is maximized when data are projected to the
direction of the eigenvector of S corresponding to the largest eigenvalue.

S is symmetric and positive semidefinite. The eigenvectors corresponding to different
eigenvalues are orthogonal.

It follows that the D-dimensional subspace maximizing the variance of the data is the
one formed by D eigenvectors of S corresponding the the D largest eigenvalues.

Note: "Variance" in the above sentence is the sum of variances in individual
orthogonal directions. For a 2-D subspace,

T ) = 3l o~ %)) + [0 (e~ 0. (8)

n=1
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Equivalence to Minimum error formulation (1/2) @

Consider the complete orthogonal basis {u;} where ¢ =1,...,D. Thus

uTuj = 51’]' (9)

>

Each point can be represented as

D
Xn = Z ApiUy , (10)
1=1

and

Xy = Z(xgui)ui. (11)
i=1
This is just expressing x,, in a rotated coordinate system given by orthonormal system
{u;}. Let us create an approximation to each x,, by truncating this expansion to only
M components, the remaining D — M components approximated by constants b;.

The approximation x,,:

M D

X, = Z( Eui)umt Z b;u; (12)

1=1 1=M+41
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Equivalence to Minimum error formulation (2/2) @

M D
1=1 1=M+1
Clearly,
b, =X'w;,,i=M+1,...,D (13)

The task is to find the optimal orthonormal basis {u;} which produces the best
approximation measured by

1 N

J({ui}) = NZ I%5 — % |® (14)

n=1

The minimum error criterion is the complement of the maximum variance criterion,
and thus the solution to the set {u;} is the same.
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Multivariate Normal Model and PCA

Recall that the ML estimate of the Multivariate Normal Distribution is defined by
sample mean X and sample covariance matrix S. The model is

p(x | %,8) = \/‘;Tis' exp {—%(x _%)Ts(x — i)}

Denote stacked eigenvectors in descending order of their eigenvalues as U,

U = {uj,uy,...,up}

Therefore (characteristic equation)

SU=UA=U . ,

and
S = UAU"'.

(15)

(16)

(17)

(18)
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Multivariate Normal Model and PCA @

We approximate the data, as before, by projecting to first M eigenvectors. Thus,
given data point x we have

X —X = (517527-~75M75M—|—17---75D) (19)

Note that we only can compute 01 .. 0,7, as often we don't or can't store all
eigenvectors for computing all ¢'s. However, we can easily compute

A=0%1+00sst . +0p=|x—X|"—07 -8 —...— % (20)
and the exponent is then approximated as

52 52 52 52 A

—Ta—1 —

o (x — )~ — %2, % - 21
2(X X) STH(x —X) ()\1+)\2+)\3+ )\M—F)\) (21)

Common choice: A = A\p;11q
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High-dimensional data (1/2) @

Dimensionality of data can be high, and even higher than number of samples.

Consider dimensionality D = 1M (one million) and number of samples N = 100. All
analysis still applies, but it would be wasteful to compute eigenvectors for the 1IMx1M
matrix, as its rank will anyway be at most N (thus 100). Let us define X to be a
matrix formed by stacking all the data vectors (after having subtracted the mean from
them): X = [x; —X,x2 — X, ..., XN — X|.

Thus,

1 o 1
Z T T
The characteristic equation is then

1
NXXTu = \u. (23)

Left-multiplying both sides by X' gives

W \\Y

1 —~T —~T
NXTX (XTa) =2 (Xt) . (24)
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High-dimensional data (2/2) @

Thus, XX, which is only 100 x 100, has exactly the same set of eigenvalues:

1
NXTXW = \w. (25)

Left-multiplying now by X, we get

1 T B
NXX (Xw) = A(Xw). (26)

Conclusion: If D > N, form the matrix T = %XTX and compute its eigenvalues
A's and eigenvectors w. Compute the eigenvectors of S = %XXT as

B Xw
[ Xwl|

A%

(27)

IO IN|O|OT | OWIN| -

ek
o

(-
ek

13

14

15

16

17



http://cmp.felk.cvut.cz

D.
®)

’r..'L,
\

e
’ ol a i — v >
’r R & % alt
i (O G
a8 b ®

18 :
V . . $ a e
L& . o 1 % .. 5 '3 ...r i ¢ | 4
B . e IR =8 | I8
b | : % 24
v & ’ .
g » ¢ —— t P - ﬁn k
w 4 .
L 3 .‘..,u..

Subject 1, 64 illumination conditions

—
T'g)
S~
N’
Q
(7))
4]
o)
(qv]
it
©
©
2
4]
Vl
|
N
2
Q.
=
(q]
X
LLl

images of 38 subjects, each under 64 different illumination conditions:
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Example 2 - Yale database (2/5)

images of 38 subjects, each under 64 different illumination conditions:

38 subjects
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Example 2 - Yale database (3/5) @

images of 38 subjects, each under 64 different illumination conditions. Thus, there is
38 x 64 = 2432 images in total. Each of them is a feature vector with
192 x 168 = 32256 dimensions (pixels). PCA gives the following eigenvalues:

11.
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Example 2 - Yale database (4/5)

| e

mean

1st ev 2nd ev 3rd ev

_/‘ \’
”"'

first 72 eigenvectors
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Example 2 - Yale database (5/5)

Reconstruction of original vector using eigenvectors

-

J’J

original mean and 3 evs mean and 10 evs
n n

mean and 50 evs mean and 100 evs mean and 300 evs
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