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Introduction

� Alternative name: Karhunene Loeve transform

� Used for: data approximation, identifying sources of variance in the data
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Maximum variance formulation (1/3)

Let the data be {xi | i = 1, 2, ..., N}, with sample mean x = 1
N

∑N
n=1 xn .

Let us find the unit vector u1 to project to such that the variance J(u1) of the
projected data is maximized. The projection x

(p)
n of an xn to one-dimensional

subspace generated by u1 is given by

x(p)
n = u1 (uT

1 xn) , uT
1 u1 = 1 . (1)

The variance J(u1) of projected data is

J(u1) =
1

N

N∑
n=1

(
uT
1 xn − uT

1 x
)2

=
1

N

N∑
n=1

uT
1 (xn − x)(xn − x)

T
u1 = uT

1 Su1 , (2)

where S is the normalized scatter matrix:

S =
1

N

N∑
n=1

(xn − x)(xn − x)
T
. (3)
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Maximum variance formulation (2/3)

The Lagrangian of this optimization problem is

L(u1, λ1) = J(u1) + λ1 (1− uT
1 u1)︸ ︷︷ ︸

constraint

= uT
1 Su1 + λ1(1− uT

1 u1) , (4)

where λ1 is the Lagrange multiplier. Taking the derivative w.r.t. the vector u1 and
setting it to zero gives

∂L(u1, λ1)

∂u1
= Su1 − λ1u1 = 0 , (5)

and thus
Su1 = λ1u1 . (6)

This is the characteristic equation for the covariance matrix S. Any eigenvalue λ1 and
its corresponding eigenvector v1 solves this equation, with variance J(u1) equal to:

J(u1) = uT
1 Su1 = uT

1 λ1u1 = λ1 . (7)

The maximum is attained if λ1 is the largest eigenvalue of the matrix S and u1 is its
corresponding eigenvector.
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Example 1 - Iris dataset
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Data shown as crosses ×. Iris dataset: feature vectors are 4-dimensional, here
dimensions 2 and 3 used (petal length and sepal width).

Eigenvalues: λ1 = 3.148, λ2 = 0.153, eigenvectors U = [u1,u2]. Variance is
maximized when data are projected to direction u1.
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Maximum variance formulation (3/3)

Recall: The variance of a 1-D projection is maximized when data are projected to the
direction of the eigenvector of S corresponding to the largest eigenvalue.

S is symmetric and positive semidefinite. The eigenvectors corresponding to different
eigenvalues are orthogonal.

It follows that the D-dimensional subspace maximizing the variance of the data is the
one formed by D eigenvectors of S corresponding the the D largest eigenvalues.

Note: "Variance" in the above sentence is the sum of variances in individual
orthogonal directions. For a 2-D subspace,

J(u1,u2) =
1

N

N∑
n=1

[uT
1 (xn − x)]2 + [uT

2 (xn − x)]2 . (8)
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Equivalence to Minimum error formulation (1/2)

Consider the complete orthogonal basis {ui} where i = 1, . . . , D. Thus

uT
i uj = δij (9)

Each point can be represented as

xn =

D∑
i=1

αniui , (10)

and

xn =

D∑
i=1

(xT
nui)ui . (11)

This is just expressing xn in a rotated coordinate system given by orthonormal system
{ui}. Let us create an approximation to each xn by truncating this expansion to only
M components, the remaining D −M components approximated by constants bi.
The approximation x̃n:

x̃n =

M∑
i=1

(xT
nui)ui +

D∑
i=M+1

biui (12)
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Equivalence to Minimum error formulation (2/2)

x̃n =
M∑

i=1

(xT
nui)ui +

D∑
i=M+1

biui (12)

Clearly,
bi = xTui, i = M + 1, . . . , D (13)

The task is to find the optimal orthonormal basis {ui} which produces the best
approximation measured by

J({ui}) =
1

N

N∑
n=1

‖xn − x̃n‖2 (14)

The minimum error criterion is the complement of the maximum variance criterion,
and thus the solution to the set {ui} is the same.
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Multivariate Normal Model and PCA

Recall that the ML estimate of the Multivariate Normal Distribution is defined by
sample mean x and sample covariance matrix S. The model is

p(x | x,S) =
1√
|2πS|

exp

{
−1

2
(x− x)

T
S−1(x− x)

}
(15)

Denote stacked eigenvectors in descending order of their eigenvalues as U,

U = {u1,u2, ...,uD} (16)

Therefore (characteristic equation)

SU = UΛ = U


λ1

λ2
. . .

λD

 , (17)

and
S = UΛUT . (18)
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Multivariate Normal Model and PCA

We approximate the data, as before, by projecting to first M eigenvectors. Thus,
given data point x we have

x− x = (δ1, δ2, ..., δM , δM+1, ..., δD) (19)

Note that we only can compute δ1 .. δM , as often we don’t or can’t store all
eigenvectors for computing all δ’s. However, we can easily compute

∆ = δ2M+1 + δ2M+2 + ...+ δ2D = ‖x− x‖2 − δ21 − δ22 − ...− δ2M (20)

and the exponent is then approximated as

−1

2
(x− x)

T
S−1(x− x) ' −1

2

(
δ21
λ1

+
δ22
λ2

+
δ23
λ3

+ ...
δ2M
λM

+
∆

λ

)
(21)

Common choice: λ = λM+1
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High-dimensional data (1/2)

Dimensionality of data can be high, and even higher than number of samples.

Consider dimensionality D = 1M (one million) and number of samples N = 100. All
analysis still applies, but it would be wasteful to compute eigenvectors for the 1Mx1M
matrix, as its rank will anyway be at most N (thus 100). Let us define X to be a
matrix formed by stacking all the data vectors (after having subtracted the mean from
them): X = [x1 − x,x2 − x, ...,xN − x].

Thus,

S =
1

N

N∑
n=1

(xn − x)(xn − x)
T

=
1

N
XXT . (22)

The characteristic equation is then

1

N
XXTu = λu . (23)

Left-multiplying both sides by XT gives

1

N
XTX

w︷ ︸︸ ︷
(XTu) = λ

w︷ ︸︸ ︷
(XTu) . (24)
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High-dimensional data (2/2)

Thus, XTX, which is only 100× 100, has exactly the same set of eigenvalues:

1

N
XTXw = λw . (25)

Left-multiplying now by X, we get

1

N
XXT(Xw) = λ(Xw) . (26)

Conclusion: If D � N , form the matrix T = 1
N XTX and compute its eigenvalues

λ’s and eigenvectors w. Compute the eigenvectors of S = 1
N XXT as

v =
Xw

‖Xw‖
. (27)
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Example 2 - Yale database (1/5)

images of 38 subjects, each under 64 different illumination conditions:

Subject 1, 64 illumination conditions
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Example 2 - Yale database (2/5)

images of 38 subjects, each under 64 different illumination conditions:

38 subjects
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Example 2 - Yale database (3/5)

images of 38 subjects, each under 64 different illumination conditions. Thus, there is
38× 64 = 2432 images in total. Each of them is a feature vector with
192× 168 = 32256 dimensions (pixels). PCA gives the following eigenvalues:
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Example 2 - Yale database (4/5)

mean 1st ev 2nd ev 3rd ev

first 72 eigenvectors
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Example 2 - Yale database (5/5)

Reconstruction of original vector using eigenvectors

original mean and 3 evs mean and 10 evs

mean and 50 evs mean and 100 evs mean and 300 evs
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