
1/46Learning and Linear Classifiers
lecturer: Jiří Matas, matas@cmp.felk.cvut.cz

authors: V. Hlaváč, J. Matas, O. Drbohlav

Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception

121 35 Praha 2, Karlovo nám. 13, Czech Republic
http://cmp.felk.cvut.cz

7/Nov/2016

Last update: 3/Nov/2016

LECTURE PLAN
� The problem of classifier design.
� Learning in pattern recognition.
� Linear classifiers.
� Perceptron algorithms.
� Optimal separating plane with the Kozinec algorithm.

http://cmp.felk.cvut.cz

2/46
Classifier Design (1)

The object of interest is characterised by observable properties x ∈ X and its class
membership (unobservable, hidden state) k ∈ K, where X is the space of observations
and K the set of hidden states.

The objective of classifier design is to find a strategy q∗ : X → K that has some optimal
properties.

Bayesian decision theory solves the problem of minimisation of risk

R(q) =
∑
x,k

p(x, k)W (q(x), k)

given the following quantities:

� p(x, k),∀x ∈ X, k ∈ K – the statistical model of the dependence of the observable
properties (measurements) on class membership

� W (q(x), k) the loss of decision q(x) if the true class is k

http://cmp.felk.cvut.cz

3/46
Classifier Design (2)

Non-Bayesian decision theory solves the problem if p(x|k),∀x ∈ X, k ∈ K are known,
but p(k) are unknown (or do not exist). Constraints or preferences for different errors
depend on the problem formulation.

However, in applications typically:

� none of the probabilities are known. The designer is only given a training multiset
T = {(x1, k1) . . . (xL, kL)}, where L is the length (size) of the training multiset.

� the desired properties of the classifier q(x) are known

http://cmp.felk.cvut.cz

4/46
Classifier Design via Parameter Estimation

� Assume p(x, k) have a particular form, e.g. Gaussian (mixture), piece-wise constant,
etc., with a finite (i.e. small) number of parameters θk.

� Estimate the parameters from the using training set T

� Solve the classifier design problem (e.g. risk minimisation), substituting the estimated
p̂(x, k) for the true (and unknown) probabilities p(x, k)

? : What estimation principle should be used?

– : There is no direct relationship between known properties of estimated p̂(x, k) and the
properties (typically the risk) of the obtained classifier q′(x)

– : If the true p(x, k) is not of the assumed form, q′(x) may be arbitrarily bad, even for the
asymptotic case L→∞.

+ : Implementation is often straightforward, especially if parameters θk for each class are
assumed independent.

+ : Performance on test data can be predicted by crossvalidation.

http://cmp.felk.cvut.cz

5/46
Learning in Statistical Pattern Recognition

� Choose a class Q of decision functions (classifiers) q : X → K.

� Find q∗ ∈ Q minimising some criterion function on the training set that approximates
the risk R(q) (true risk is uknown).

� Objective functions:

Empirical risk Remp (training set error) minimization. True risk approximated by

Remp(qθ(x)) =
1

L

L∑
i=1

W (qθ(xi), ki) ,

θ∗ = argmin
θ

Remp(qθ(x))

Examples: Perceptron, Neural nets (Back-propagation), etc.

Structural risk minimization.
Example: SVM (Support Vector Machines).

http://cmp.felk.cvut.cz

6/46
Overfitting and Underfitting

� How wide a class Q of classifiers qθ(x) should be used?

� The problem of generalization is a key problem of pattern recognition: a small empirical
risk Remp need not imply a small true expected risk R.

underfit fit overfit

As discussed previously, a suitable model can be selected e.g. using cross-validation.

http://cmp.felk.cvut.cz

7/46
Structural Risk Minimization Principle (1)

We would like to minimise the risk

R(q) =
∑
x,k

p(x, k)W (qθ(x), k) ,

but p(x, k) is unknown.

Vapnik and Chervonenkis proved a remarkable inequality

R(q) ≤ Remp(q) +Rstr

(
h,

1

L

)
,

where h is VC dimension (capacity) of the class of strategies Q.

Notes:

+ Rstr does not depend on the unknown p(x, k)

+ Rstr known for some classes of Q, e.g. linear classifiers.

http://cmp.felk.cvut.cz

8/46
Structural Risk Minimization Principle (2)

� There are more types of upper bounds on the expected risk.
E.g. for linear discriminant functions

R

m VC dimension (capacity)

h ≤ R2

m2
+ 1

� Examples of learning algorithms: SVM or ε-Kozinec.

(w∗, b∗) = argmax
w,b

min

(
min
x∈X1

w · x+ b

|w|
, min
x∈X2

w · x+ b

|w|

)
.

http://cmp.felk.cvut.cz

9/46
Empirical Risk Minimisation, Notes

Is then empirical risk minimisation = minimisation of training set error, e.g. neural networks
with backpropagation, useless? No, because:

– Rstr may be so large that the upper bound is useless.

+ Vapnik’s theory justifies using empirical risk minimisation on classes of functions with
finite VC dimension.

+ Vapnik suggests learning with progressively more complex classes Q.

+ Empirical risk minimisation is computationally hard (impossible for large L). Most classes
of decision functions Q where empirical risk minimisation (at least local) can be
effeciently organised are often useful.

http://cmp.felk.cvut.cz

10/46
Linear Classifiers

� For some statistical models, the Bayesian or non-Bayesian strategy is implemented by a
linear discriminant function.

� Capacity (VC dimension) of linear strategies in an n-dimensional space is n+ 2. Thus,
the learning task is well-posed, i.e., strategy tuned on a finite training multiset does not
differ much from correct strategy found for a statistical model.

� There are efficient learning algorithms for linear classifiers.

� Some non-linear discriminant functions can be implemented as linear after the feature
space transformation.

http://cmp.felk.cvut.cz

11/46
Linear Discriminant Function

� fk(x) = wk · x+ w0,k

� A strategy k∗ = argmax
k

fk(x) divides X into |K| convex regions.

k=1 k=2

k=3

k=4

k=5
k=6

http://cmp.felk.cvut.cz

12/46
Linear Separability (Two Classes)

Consider a dataset T = {(x1, k1), (x2, k2), ..., (xL, kN)}, with xi ∈ RD and ki ∈ {−1, 1}
(i = 1, 2, ..., L.)

The data are linearly separable if there exists a hyperplane which divides RD to two
half-spaces such that the data of a given class are all in one half-space.

Formally, the data are linearly separable if

∃w ∈ RD+1 : sign
(
w ·
[

1
xi

])
= ki ∀i = 1, 2, ..., L . (1)

Example of linearly separable data is on the next slide.

http://cmp.felk.cvut.cz

13/46
Dichotomy, Two Classes Only

|K| = 2, i.e. two hidden states (typically also classes)

q(x) =

 k = 1 , if w · x+ w0 > 0 ,

k = −1 , if w · x+ w0 < 0 .
(2)

x
1

x
2

http://cmp.felk.cvut.cz

14/46
Perceptron Classifier

Input: T = {(x1, k1) . . . (xL, kL)}, k ∈ {−1, 1}

Goal: Find a weight vector w and offset w0 such that :

w · xj + w0 > 0 if kj = 1 , (∀j ∈ {1, 2, ..., L})

w · xj + w0 < 0 if kj = −1
(3)

Equivalently, (as in the logistic regression lecture), with x′ =

[
1
x

]
and w′ =

[
w0

w

]
:

w′ · x′j > 0 if kj = 1 (∀j ∈ {1, 2, ..., L}) ,

w′ · x′j < 0 if kj = −1 ,
(4)

or, with x′′j = kjx
′
j,

w′ · x′′j > 0 , (∀j ∈ {1, 2, ..., L} .) (5)

http://cmp.felk.cvut.cz

15/46
Perceptron Classifier Formulation, Example

2 1 0 1 2

f(−0.25) =0

f(x)>0, classified as 1f(x)<0, classified as -1

f(x) =w0 +w1x=0.5 +2.0x

2 1 0 1 2
0

1

w=(0.5,2.0)

f′(x)>0, classified as 1f′(x)<0, classified as -1

f′(x) =(w0 ,w1) ·(1,x) =(0.5,2.0) ·(1,x)

2 1 0 1 2

1

0

1

w=(0.5,2.0)

f′(x)>0, correct classificationf′(x)≤0, classification error

f′′(x) =(w0 ,w1) ·(1,x)k=(0.5,2.0) ·(1,x)k

• class 1, • class -1
Data points, x ∈ R

Augmenting by 1’s, x′j ∈ R2

Multiplying by kj, kjx′′j ∈ R2

http://cmp.felk.cvut.cz

16/46
Perceptron Learning: Algorithm

We use the last representation (x′′j = kj

[
1
xj

]
, w′ =

[
w0

w

]
) and drop the dashes to

avoid notation clutter.

Goal: Find a weight vector w ∈ RD+1 (original feature space dimensionality is D) such that:

w · xj > 0 (∀j ∈ {1, 2, ..., L}) (6)

Perceptron algorithm, (Rosenblat 1962):
1. t = 0, w(t) = 0.
2. Find a wrongly classified observation xj:

w(t) · xj ≤ 0, (j ∈ {1, 2, ..., L}.)
3. If there is no misclassified observation then terminate. Otherwise,

w(t+1) = w(t) + xj .

4. Goto 2.

http://cmp.felk.cvut.cz

17/46
Perceptron, Example 1

2 1 0 1 2

1

0

1 w =(1.0,0.5) x1

x2

Iteration 1: w =x1

2 1 0 1 2

1

0

1

w =(0.0,1.0)

x1

x2

Iteration 2: w =x1 +x2

Consider this dataset with 2
points. As w(0) = 0, all points
are misclassified. Order the
points randomly and go over
this dataset. Find the first
misclassified point. It is x1, say.
Make the update of weight,
w(1) ← w(0) + x1.
Note that x2 is misclassified.

w(2) ← w(1) + x2. The
whole dataset is correctly
classified. Done.

http://cmp.felk.cvut.cz

18/46
Perceptron, Example 2, Iter. 1

z class 1, z class -1, |w/ |w=misclassified,

ε
(1)
tr = 1.0

w0 ← w0+1

w(1) = w(0)︸︷︷︸
= 0

+ kj

[
1
xj

]
1 point visited so far.

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1
w1

0

1

w
2

0 2 4 6 8 10
iter

0
1

w
0

All data are misclassified.

|w misclassified xj
to be used for the
weight update

http://cmp.felk.cvut.cz

19/46
Perceptron, Example 2, Iter. 2

z class 1, z class -1, |w/ |w=misclassified,

ε
(2)
tr = 0.15

w0 ← w0−1

w(2) = w(1) + kj

[
1
xj

]
2 points visited so far.

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1
w1

0

1

2

w
2

0 2 4 6 8 10
iter

0
1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

20/46
Perceptron, Example 2, Iter. 3

z class 1, z class -1, |w/ |w=misclassified,

ε
(3)
tr = 0.050

w0 ← w0−1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 3)

15 points visited so far.

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

21/46
Perceptron, Example 2, Iter. 4

z class 1, z class -1, |w/ |w=misclassified,

ε
(4)
tr = 0.035

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 4)

19 points visited so far.

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

22/46
Perceptron, Example 2, Iter. 5

z class 1, z class -1, |w/ |w=misclassified,

ε
(5)
tr = 0.010

w0 ← w0−1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 5)

114 points visited so far.

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

23/46
Perceptron, Example 2, Iter. 6

z class 1, z class -1, |w/ |w=misclassified,

ε
(6)
tr = 0.030

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 6)

186 points visited so far.

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2 3
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

24/46
Perceptron, Example 2, Iter. 7

z class 1, z class -1, |w/ |w=misclassified,

ε
(7)
tr = 0.0

w0 = 0

400 points visited.
All data classified correctly. Done.

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2 3
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

Final weight:
w = (0, 2.76, 0.33)

>

http://cmp.felk.cvut.cz

25/46
Novikoff Theorem

Let the data be linearly separable and let there be
a unit vector u and a scalar γ ∈ R+ such that

u · xj ≥ γ ∀j ∈ {1, 2, ..., L} (‖u‖ = 1)
(7)

Let the norm of the longest vector in the dataset
be D:

D = max
x∈T
‖x‖ . (8)

Then the perceptron algorithm will finish in a finite number of steps t∗, with

t∗ ≤ D2

γ2
. (9)

? What if the data is not separable?

? How to terminate perceptron learning?

http://cmp.felk.cvut.cz

26/46
Novikoff Theorem, Proof (1)

Let x(t) be the point which is incorrectly classified
at time t, so

w(t) · x(t) ≤ 0 . (10)

Recall that the weight w(t+1) is computed using
this update x(t) as

w(t+1) = w(t) + x(t) . (11)
For the squared norm of w(t+1), we have

‖w(t+1)‖2 = w(t+1) ·w(t+1) = (w(t) + x(t)) · (w(t) + x(t)) (12)

= ‖w(t)‖2 + 2w(t) · x(t)︸ ︷︷ ︸
≤ 0

+ ‖x(t)‖2︸ ︷︷ ︸
≤ D2

(13)

≤ ‖w(t)‖2 +D2 ≤ ‖w(t−1)‖2 + 2D2 (14)

≤ ‖w(t−2)‖2 + 3D2 ≤ . . . ≤ ‖w(0)‖2 + (t+ 1)D2 (15)

‖w(t+1)‖2 ≤ (t+ 1)D2 (16)

http://cmp.felk.cvut.cz

27/46
Novikoff Theorem, Proof (2)

We also have that

w(t+1) · u = w(t) · u+ x(t) · u︸ ︷︷ ︸
≥ γ

(17)

≥ w(t) · u+ γ ≥ w(t−1) · u+ 2γ
(18)

≥ w(t−2) · u+ 3γ ≥ . . . (19)

≥ w(0) · u+ (t+ 1)γ (20)

w(t+1) · u ≥ (t+ 1)γ (21)
We take the two inequalities together, to obtain

(t+ 1)D2 ≥ ‖w(t+1)‖2 ≥ (w(t+1) · u)2 ≥ (t+ 1)2γ2 (‖u‖ = 1) (22)

Therefore,

(t+ 1) ≤ D2

γ2
. (23)

http://cmp.felk.cvut.cz

28/46
Perceptron Learning as an Optimisation Problem (1)

Perceptron algorithm, batch version, handling non-separability, another perspective:

Input: T = {x1, . . .xL}
Output: a weight vector w minimising

J(w) = |{x ∈ X : w(t) · x ≤ 0}| (24)
or, equivalently

J(w) =
∑
x∈X

w(t)·x≤0

1 (25)

What would the most common optimisation method, i.e. gradient descent, perform?

w(t+1) = w(t) − η∇J(w) (26)

The gradient of J(w) is, however, either 0 or undefined. The gradient minimisation cannot
proceed.

http://cmp.felk.cvut.cz

29/46
Perceptron Learning as an Optimisation Problem (2)

Let us redefine the cost function:

Jp(w) =
∑
x∈X
w·x≤0

(−w · x) (27)

∇Jp(w) =
∂J

∂w
=
∑
x∈X
w·x≤0

(−x) (28)

� The Perceptron Algorithm is a gradient descent method for Jp(w) (gradient for a
single misclassified sample is −x, so the weight update is x)

� Learning and empirical risk minimisation is just an instance of an optimization problem.

� Either gradient minimisation (backpropagation in neural networks) or convex (quadratic)
minimisation (in mathematical literature called convex programming) is used.

http://cmp.felk.cvut.cz

30/46

Perceptron Learning:
Non-Separable Case

Perceptron algorithm, batch version, handling non-separability:

Input: T = {x1, . . .xL}
Output: weight vector w∗

1. w(0) = 0, E = |T | = L, w∗ = 0 .

2. Find all mis-classified observations X− = {x ∈ X : w(t) · x ≤ 0}.

3. if |X−| < E then E = |X−|;w∗ = w(t)

4. if TermCond(w∗, t, tlup) then terminatate (tlup is the time of the last update)
else:

w(t+1) = w(t) + ηt
∑
x∈X−

x

5. Goto 2.

� The algorithm converges with probability 1 to the optimal solution.

� Convergence rate is not known.

� Termination condition TermCond(·) is a complex function of the quality of the best
solution, time since last update t− tlup and requirements on the solution.

http://cmp.felk.cvut.cz

31/46

Optimal Separating Plane and
The Closest Point To The Convex Hull

The problem of optimal separation by a hyperplane

(1) w∗ = argmax
w

min
j

w

|w|
· xj (29)

can be converted to searching for the closest point to a convex hull (denoted by the overline)

x∗ = argmin
x∈X

|x|

There holds that x∗ solves also the problem (29).

Recall that the classfier that maximises separation minimises the structural risk Rstr
(page 8)

http://cmp.felk.cvut.cz

32/46
Convex Hull, Illustration

w* = m

X

min
j

(
w

|w|
· xj
)
≤ m ≤ |w| , w ∈ X

lower bound upper bound

http://cmp.felk.cvut.cz

33/46
ε-Solution

� The aim is to speed up the algorithm.

� The allowed uncertainty ε is introduced.

|w| −min
j

(
w

|w|
· xj
)
≤ ε

http://cmp.felk.cvut.cz

34/46
Training Algorithm 2 – Kozinec (1973)

1. w(0) = xj, i.e. any observation.

2. A wrongly classified observation xj is sought, i.e., w(t) · xj ≤ 0, j ∈ J .

3. If there is no wrongly classified observation then the algorithm finishes otherwise

w(t+1) = (1− κ∗)w(t) + κ∗ xj,

κ∗ = argmin
κ∈(0,1)

‖(1− κ)w(t) + κxj‖

4. Goto 2.

http://cmp.felk.cvut.cz

35/46
Kozinec and ε-Solution

The second step of Kozinec algorithm is modified to:

A wrongly classified observation xj is sought for which

|w(t)| −min
j

(
w(t)

|w(t)|
· xj
)
≥ ε

m

0

ε

t

|w |
t

http://cmp.felk.cvut.cz

36/46
Dimension Lifting

Consider the data on the right. They are
not linearly separable, because there is no
w ∈ R2 such that sign(w0 + w1x) would
correctly classify the data. 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Let us artificially enlarge the
dimensionality of the feature space
by a mapping
φ(x) : R→ R2:

x← φ(x) =

[
x
x2

]
(30)

After such mapping, the data become
linearly separable (the separator is shown
on the right). 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.00.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In general, lifting the feature space means adding D′ dimensions and replacing the original
feature vectors by

x← φ(x) , φ(x) : RD → RD+D′ . (31)

http://cmp.felk.cvut.cz

37/46
Lifting, Example 1, Iter. 1

z class 1, z class -1, |w/ |w=misclassified,

ε
(1)
tr = 1.0

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 1)

1 point visited so far.

2 1 0 1 2
2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0
w1

1

0

w
2

0 2 4 6 8 10
iter

0
1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

38/46
Lifting, Example 1, Iter. 2

z class 1, z class -1, |w/ |w=misclassified,

ε
(2)
tr = 0.38

w0 ← w0−1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 2)

3 points visited so far.

2 1 0 1 2
2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0
w1

1

0

w
2

0 2 4 6 8 10
iter

0
1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

39/46
Lifting, Example 1, Iter. 3

z class 1, z class -1, |w/ |w=misclassified,

ε
(3)
tr = 0.50

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 3)

6 points visited so far.

2 1 0 1 2
2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0
w1

1

0

w
2

0 2 4 6 8 10
iter

0
1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

40/46
Lifting, Example 1, Iter. 4

z class 1, z class -1, |w/ |w=misclassified,

ε
(4)
tr = 0.25

w0 ← w0−1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 4)

13 points visited so far.

2 1 0 1 2
2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0
w1

1

0

w
2

0 2 4 6 8 10
iter

0
1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

41/46
Lifting, Example 1, Iter. 5

z class 1, z class -1, |w/ |w=misclassified,

ε
(5)
tr = 0.62

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 5)

14 points visited so far.

2 1 0 1 2
2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0
w1

1

0

w
2

0 2 4 6 8 10
iter

0
1

w
0

|w the weight updater

http://cmp.felk.cvut.cz

42/46
Lifting, Example 1, Iter. 12

z class 1, z class -1, |w/ |w=misclassified,

ε
(12)
tr = 0.44

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 12)

36 points visited so far.

2 1 0 1 2
2

1

0

1

2

0 5 10 15 20
iter

0.0

0.5

1.0

ε t
r

1 0 1
w1

1

0

1

2

w
2

0 5 10 15 20
iter

0

2

w
0

|w the weight updater

http://cmp.felk.cvut.cz

43/46
Lifting, Example 1, Iter. 35

z class 1, z class -1, |w/ |w=misclassified,

ε
(35)
tr = 0.19

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 35)

97 points visited so far.

2 1 0 1 2
2

1

0

1

2

0 5 10 15 20 25 30 35 40
iter

0.0

0.5

1.0

ε t
r

2 1 0 1
w1

1

0

1

2

3

w
2

0 5 10 15 20 25 30 35 40
iter

0

3

w
0

|w the weight updater

http://cmp.felk.cvut.cz

44/46
Lifting, Example 1, Iter. 47

z class 1, z class -1, |w/ |w=misclassified,

ε
(47)
tr = 0.31

w0 ← w0+1

w(t)=w(t−1) + kj

[
1
xj

]
(t = 47)

139 points visited so far.

2 1 0 1 2
2

1

0

1

2

0 10 20 30 40 50
iter

0.0

0.5

1.0

ε t
r

3 2 1 0 1 2
w1

1

0

1

2

3

4

w
2

0 10 20 30 40 50
iter

0

4

w
0

|w the weight updater

http://cmp.felk.cvut.cz

45/46
Lifting, Example 1, Iter. 48

z class 1, z class -1, |w/ |w=misclassified,

ε
(48)
tr = 0.0

w0 = 3

160 points visited.
All data classified correctly. Done.

2 1 0 1 2
2

1

0

1

2

0 10 20 30 40 50
iter

0.0

0.5

1.0

ε t
r

3 2 1 0 1 2
w1

1

0

1

2

3

4

w
2

0 10 20 30 40 50
iter

0

4

w
0

Final weight:
w = (3,−1.5, 3.12)>

http://cmp.felk.cvut.cz

46/46
Lifting, Example 1, Result

Note that we have used the mapping x←
[

x
x2 − 1

]
because of faster perceptron

convergence (w.r.t. using just
[
x
x2

]
).

The final weight vector for the
dimensionality-lifted dataset is
w = (3,−1.5, 3.12)>.

The resulting discriminant function is:

f(x) = 3− 1.5x+ 3.12(x2 − 1) (32)

= −0.12− 1.5x+ 3.12x2 . (33)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

http://cmp.felk.cvut.cz

	First page
	ccmp Classifier Design (1)
	ccmp Classifier Design (2)
	ccmp Classifier Design via Parameter Estimation
	ccmp Learning in Statistical Pattern Recognition
	ccmp Overfitting and Underfitting
	ccmp Structural Risk Minimization Principle (1)
	ccmp Structural Risk Minimization Principle (2)
	ccmp Empirical Risk Minimisation, Notes
	ccmp Linear Classifiers
	ccmp Linear Discriminant Function
	ccmp Linear Separability (Two Classes)
	ccmp Dichotomy, Two Classes Only
	ccmp Perceptron Classifier
	ccmp Perceptron Classifier Formulation, Example
	ccmp Perceptron Learning: Algorithm
	ccmp Perceptron, Example 1
	ccmp Perceptron, Example 2, Iter. 1
	ccmp Perceptron, Example 2, Iter. 2
	ccmp Perceptron, Example 2, Iter. 3
	ccmp Perceptron, Example 2, Iter. 4
	ccmp Perceptron, Example 2, Iter. 5
	ccmp Perceptron, Example 2, Iter. 6
	ccmp Perceptron, Example 2, Iter. 7
	ccmp Novikoff Theorem
	ccmp Novikoff Theorem, Proof (1)
	ccmp Novikoff Theorem, Proof (2)
	ccmp Perceptron Learning as an Optimisation Problem (1)
	ccmp Perceptron Learning as an Optimisation Problem (2)
	ccmp Perceptron Learning:\ Non-Separable Case
	ccmp Optimal Separating Plane and \ The Closest Point To The Convex Hull
	ccmp Convex Hull, Illustration
	ccmp $varepsilon $-Solution
	ccmp Training Algorithm 2 -- Kozinec (1973)
	ccmp Kozinec and $varepsilon $-Solution
	ccmp Dimension Lifting
	stitle , Iter. 1
	stitle , Iter. 2
	stitle , Iter. 3
	stitle , Iter. 4
	stitle , Iter. 5
	stitle , Iter. 12
	stitle , Iter. 35
	stitle , Iter. 47
	stitle , Iter. 48
	ccmp Lifting, Example 1, Result
	Last page

