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Probability Estimation

Recall that in the previous lecture, parametric methods for density estimation have been
dealt with. The advantage of these methods is that there is a low number of parameters to
estimate. The disadvantage is that the resulting estimated density can be arbitrarily wrong if
the underlying distribution does not agree with the assumed parametric model.
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Non-Parametric Density Estimation

� histogram

� Parzen estimation

� Nearest Neighbor approach
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Histogram (1)

Consider the following distribution on the interval [0, 1], and i.i.d. sampling from it.
We will fit the distribution by a ’histogram’ with B bins. More precisely, we will estimate a
piecewise-constant function on the interval [0, 1] with B segments of the same length. For a
given B, the parameters of this piecewise-constant function are the heights h1, h2, ..., hB of
the individual bins. This function is denoted p(x|{h1, h2, ..., hB}).
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For the given number of bins B, h1, h2, ..., hB must conform to the constraint that the area
under the function must sum up to one,

1

B

B∑
i=1

hi = 1 , (hi ≥ 0.) (1)
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Histogram (2)

Let us estimate {hi, i = 1, 2, ..., B} by Maximum Likelihood (ML) approach. Let Ni denote
the number of samples which belong the i-th bin (thus clearly,

∑B
i=1Ni = N). The

likelihood p(T |θ) of observing the samples T = {x1, x2, ..., xN} given the parameters
θ = {h1, h2, ..., hB} is

p(T |θ) =

B∏
j=1

h
Nj
j . (2)

The maximization task is then

B∑
j=1

Nj log hj → max , subject to 1

B

B∑
j=1

hj = 1 , (3)

where maximization has been formulated using the log-likelihood. The Lagrangian of the
optimization task and the conditions of optimality (using the derivative ∂/∂hk) are then:

Lagrangian:
B∑
j=1

Nj log hj + λ

 1

B

B∑
j=1

hj − 1

 (4)

Nk
hk

+
λ

B
= 0⇒ hk

Nk
= const.⇒ hk = B

Nk
N

. (5)
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Histogram (3)

hk = B
Nk
N

(6)
This result is in line with the common use of histograms for
approximating pdf’s. Results for different B’s:
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Histogram: MAP and Bayes estimation

The ML estimation of hi’s suffers from similar problems as e.g. the Binomial Distribution
estimation (recall estimating π, the fraction of red socks) in the last lecture.
MAP and Bayes estimation of hi’s need a suitable prior. The conjugate prior in this case is
the Dirichlet Distribution, with the pdf p(h1, h2, ..., hB |α1, α2, ..., αB) ∼

∏
hαi−1i .

MAP Estimation:
hi = B

Ni + αi − 1

N +
∑B
i=1αi −B

(7)

Bayes Estimation:
hi = B

Ni + αi

N +
∑B
i=1αi

(8)

Interpretation: The parameters αi’s again can be interpreted as ’virtual’ observations, as if
αk points have already been assigned to the k-th bin.

Example: Take αi = 2 for all i = 1, 2, ..., B.

MAP:
hi = B

Ni + 1

N +B
(9)

Bayes:
hi = B

Ni + 2

N + 2B
(10)
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Histogram: Choosing the number of bins B (1)

Let us again employ the ML approach, this time for choosing the number of bins B:
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Histogram: Choosing the number of bins B, cross-validation

The problem is that the log-likelihood L is computed using the same data used for fitting
the model (computing hi’s). This is a similar concept to training a classifier on certain data
and testing on the same data, which is prone to over-fitting and poor generalization.
Let us compute the log likelihood using the following procedure: remove a given point from
the dataset for computing hi’s and evaluate its contribution to the log-likelihood. Do this for
all the points. If we start from e.g. hj = B

Nj+1

N+B , the modified estimation of hj (omitting
the point in question) will become hj = B

Nj
N−1+B . This leads to the following result:
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This approach is related to cross-validation technique for choosing parameters of a classifier.
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K-Nearest Neighbor Approach to Density Estimation

Find K neighbors, density estimate is p ∼ 1/V where V is the volume of minimum cell in
which K neighbors are located.

Example:
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K-Nearest Neighbor Approach to Classification

Outline:

� Definition

� Properties

� Asymptotic error of NN classifier

� Error reduction by edit operation on the training class

� Fast NN search
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K-NN Classification Definition

Assumption:

� Training set T = {(x1, k1), (x2, k2), ..., (xN , kN)}. There are R classes (letter K is
reserved for KNN in this lecture)

� A distance function d : X ×X 7→ R+
0

Algorithm:

1. Given x, find K points S = {(x′1, k′1), (x′2, k′2), ..., (x′K, k′K)} from the training set T
which are closest to x in the metric d:

S ={(x′1, k′1), (x′2, k′2), ..., (x′K, k′K)} ≡ {(xr1, kr1), (xr2, kr2), ..., (xrK , krK)} (11)
ri : the rank of (xi, ki) ∈ T as given by the ordering d(x, xi) (12)

2. Classify x to the class k which has majority in S:

k = argmax
l∈R

K∑
i=1

Jk′i = lK (x′i, k
′
i) ∈ S (13)
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K-NN Example (1)

x1

x
2

optimal decision
boundary

p(x|1)

p(x|2)

x1

p(x|1)

p(x|2)

0 3.7e-04 7.3e-04

0 3.2e-05 6.4e-05

the profile of the distributions along the shown line

Consider the two distributions
shown. They are assumed to
have the same priors,

p(1) = p(2) = 0.5.

The Bayesian optimal decision
boundary is shown by the black
circle.
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K-NN Example (2)

NN classification, K = 1 NN classification, K = 3

NN classification, K = 5 NN classification, K = 7

(N = 100 samples from each distribution)
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K-NN Properties

� Trivial implementation (→ good baseline method)

� 1-NN: Bayes error εB is the lower bound on error of classification εNN (in the
asymptotic case N →∞.) Higher bounds can also be constructed, e.g. εNN ≤ 2εB

� Slow when implemented naively, but can be sped up (Voronoi, k-D trees)

� High computer memory requirements (but training set can be edited and its cardinality
decreased)

� How to construct the metric d? (problem of scales in different axes)
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K-NN : Speeding Up the Classification

� Sophisticated algorithms for NN search:

• Classical problem in Comp. Geometry

• k-D trees

� Removing the samples from the training class T which do not change the result of
classification

• Exactly: using Voronoi diagram

• Approximately: E.g. use Gabriel graph instead of Voronoi

• Condensation algorithm: iterative, also approximate.
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Condensation Algorithm

Input: The training set T .

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from T to A. Insert the
rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an x ∈ B is mis-classified,
move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)
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Condensation Algorithm, Example

The training dataset The dataset after the condensation.
Shown with the new decision boundary.
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1-NN Classification Error

Recall that a classification error ε̄ for strategy q : X → R is computed as

ε̄ =

∫ ∑
k:q(x) 6=k

p(x, k)dx =

∫ ∑
k:q(x) 6=k

p(k|x)︸ ︷︷ ︸
ε(x)

p(x)dx =

∫
ε(x)p(x)dx . (14)

We know that the Bayesian strategy qB decides for the highest posterior probability
q(x) = argmaxk p(k|x), thus the partial error εB(x) for a given x is

εB(x) = 1−max
k

p(k|x) . (15)

Assume the asymptotic case. We will show that the following bounds hold for the partial
error εNN(x) and classification error ε̄NN in the 1-NN classification,

εB(x) ≤ εNN(x) ≤ 2εB(x)− R
R−1ε

2
B(x) , (16)

ε̄B ≤ ε̄NN ≤ 2ε̄B − R
R−1ε̄

2
B , (17)

where ε̄B is the Bayes classification error and R is the number of classes.
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1-NN Classification Error, Example (1)

s
             x

δp(1|s) =0.80
p(2|s) =0.20

p(x|1)

p(x|2)

Consider two distributions as shown, a small interval δ on an x-axis, and a point s ∈ δ. Let
the class priors be p(1) = p(2) = 0.5. Assume δ → 0 and number of samples N →∞.

Observe the following:

p(1|s) = 0.8 , p(2|s) = 0.2 , (18)
p(NN = 1|s) = p(1|s) = 0.8 , p(NN = 2|s) = p(2|s) = 0.2 , (19)

where p(NN = k|s) is the probability that the 1-NN of s is from class k (k = 1, 2) and thus
s is classified as k.
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1-NN Classification Error, Example (2)

s
             x

δp(1|s) =0.80
p(2|s) =0.20

p(x|1)
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The error εNN(s) at s is

εNN(s) = p(1|s)p(NN = 2|s) + p(2|s)p(NN = 1|s) (20)
= 1− p(1|s)p(NN = 1|s)− p(2|s)p(NN = 2|s) (21)

= 1− p2(1|s)− p2(2|s) . (22)

Generally, for R classes, the error will be

εNN(s) = 1−
∑
k∈R

p2(k|s) . (23)

http://cmp.felk.cvut.cz


22/28
1-NN Classification Error, Example (3)

The two distributions and the partial errors
(the Bayesian error εB(x) and the 1-NN error εNN(x))
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p(x|2)
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1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

εB(x) ≤ εNN(x) ≤ 2εB(x)− R
R−1ε

2
B(x) , (24)

The first inequality follows from the fact that Bayes strategies are optimal.

To prove the second inequality, let P (x) denote the maximum posterior for x:

P (x) = max
k

p(k|x) (25)

⇒ εB(x) = 1− P (x) . (26)

Let us rewrite the partial error εNN(x) using the Bayesian entities P (x) and q(x):

εNN(x) = 1−
∑
k∈R

p2(k|x) = 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) . (27)

We know that p(q(x)|x) = P (x), but the remaining posteriors can be arbitrary. Let us
consider the worst case. i.e. set p(k|x) for k 6= q(x) such that Eq. (27) is maximized. This
will provide the higher bound.
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1-NN Classification Error Bounds (2)

There are the following constraints on p(k|x) (k 6= q(x)):∑
k 6=q(x)

p(k|x) + P (x) = 1 (posteriors sum to 1) (28)

∑
k 6=q(x)

p2(k|x)→ min (29)

It is easy to show that this optimization problem is solved by setting all the posteriors to the
same number. Thus,

p(k|x) =
1− P (x)

R− 1
=
εB(x)

R− 1
(k 6= q(x)) (30)

The higher bound can then be rewritten in terms of the Bayes partial error
εB(x) = 1− P (x):

εNN(x) ≤ 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) = 1− (1− εB(x))2 − (R− 1)
ε2B(x)

(R− 1)2
. (31)
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1-NN Classification Error Bounds (3)

εNN(x) ≤ 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) = 1− (1− εB(x))2 − ε2B(x)

R− 1
. (32)

After expanding this, we get

εNN(x) ≤ 1− (1− εB(x))2 − ε2B(x)

(R− 1)
(33)

= 1− 1 + 2εB(x)− ε2B(x)− ε2B(x)
R

R− 1
(34)

= 2εB(x)− ε2B(x) R
R−1 (35)

Note that for R = 2, the bound is tight because using εB(x) = 1− P (x) in Eq. (32) gives

εNN(x) ≤ 1− P 2(x)− (1− P (x))2

1
= εNN(x) . (36)
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1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

εNN(x) ≤ 2εB(x)− ε2B(x) R
R−1 (37)

Is there a similar higher bound for the classification error ε̄NN =
∫
εNN(x)p(x)dx, based on

the Bayes error ε̄B =
∫
εB(x)p(x)dx?

Multiplying Eq. (38) by p(x), and integrating, gives

ε̄NN ≤ 2ε̄B(x)− R

R− 1

∫
ε2B(x)p(x)dx (38)

Let us use the known identity (where E (·) is the expectation operator)

var(x) = E
(
x2
)
− E2 (x) (≥ 0) (39)

Thus,
∫
ε2B(x)p(x)dx ≥

(∫
εB(x)p(x)dx

)2, and
ε̄NN ≤ 2ε̄B(x)− R

R− 1

∫
ε2B(x)p(x)dx ≤ 2ε̄B(x)− R

R− 1
ε̄2B . (40)
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K-NN Classification Error Bound

It can be shown that for K-NN, the following inequality holds:

ε̄KNN ≤ ε̄B + ε̄1NN/
√
K const (41)
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Edit algorithm

The primary goal of this method is to reduce the classification error (not the speed-up of
classification.)

Input: The training set T .

Algorithm

1. Partition T to two sets, A and B (T = A ∪B, A ∩B = ∅.)

2. Classify samples in B using KNN with training set A. Remove all samples from B
which have been mis-classified.

Output: B the training set for 1NN classification.

Asymptotic property:
ε̄edit = ε̄B

1− ε̄B
1− ε̄KNN

(42)

If ε̄KNN is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same
performance as Bayesian Classification.)
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