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Probability Density Estimation
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Parametric Methods for Density Estimation
Have been dealt with in the previous lecture
Advantarge: Low number of parameters to estimate

Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying
distribution does not agree with the assumed parametric model.

Non-Parametric Methods for Density Estimation
Histogram

Nearest Neighbor approach
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Histogram (1) @ -
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Consider the following distribution on the interval [0, 1], and i.i.d. sampling from it.
We will fit the distribution by a 'histogram’ with B bins. More precisely, we will estimate a
piecewise-constant function on the interval [0, 1] with B segments of the same length.

For a given B, the parameters of this piecewise-constant function are the heights
hi,ha, ..., hp of the individual bins. This function is denoted p(x|{h1, hs, ..., hB}).
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For the given number of bins B, hq, ho, ..., hB must conform to the constraint that the area
under the function must sum up to one,

éZhizl, (hi > 0.) (1)
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Histogram (2)
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Let us estimate {h;,i = 1,2, ..., B} by Maximum Likelihood (ML) approach. Let IV; denote

the number of samples which belong the i-th bin (thus clearly, 25:1 N; = N). The
likelihood p(7|@) of observing the samples 7 = {x1,x2,..., N} given the parameters
6 = {hl, hg, cees hB} IS

B
p(T10) =T 1;". (2)
The maximization task is then i
B | B
;Nj logh; = max, subject to E; hyj=1, (3)

where maximization has been formulated using the log-likelihood. The Lagrangian of the
optimization task and the conditions of optimality (using the derivative 9/0hy) are then:

B B
_ 1
Lagrangian: g Njlogh; + A 7] g hj —1 (4)
N, A h N,
P2 0= "% — const. = hk:B—k. (5)

h. B N, N
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Histogram (3) @ -
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This result is in line with the common use of histograms for
approximating pdf’s. Results for different B's:
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Histogram: MAP and Bayes estimation
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The ML estimation of h;'s suffers from similar problems as e.g. the Binomial Distribution
estimation (recall estimating 7, the fraction of red socks) in the last lecture.

MAP and Bayes estimation of h;'s need a suitable prior. The conjugate prior in this case is
the Dirichlet Distribution, with the pdf p(hq, hs, ..., hg|ay, as,...,ap) ~ Hh?i_l.

MAP Estimation:
NZ' —|— oy — 1

N+>l,0;—B

hi = B (7)

Bayes Estimation:
qu + 87
N + Zszl 87

Interpretation: The parameters o;'s again can be interpreted as 'virtual' observations, as if
«. points have already been assigned to the k-th bin.

h; = B (8)

Example: Take o; =2 foralle =1,2,..., B.

MAP:
N;+1

N +B (©)

h; =B
Bayes:
N; + 2

hi = B———— 1
N +2B (10)
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Histogram: Choosing the number of bins B (1) C

Let us again employ the ML approach, this time for choosing the number of bins B:
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Histogram: Choosing the number of bins B, cross-validation C
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The problem is that the log-likelihood £ is computed using the same data used for fitting the

model (computing h;'s). This is a similar concept to training a classifier on certain data and
testing on the same data, which is prone to over-fitting and poor generalization.

Let us compute the log likelihood using the following procedure: remove a given point from
the dataset for computing h;'s and evaluate its contribution to the log-likelihood. Do this for

all the points. If we start from e.g. h; = N”+B, the modified estimation of h; (omitting

Ny
1—|—B

This leads to the following result:

the point in question) will become h; = B+

’ | B
S 250 | /€=:§:¢:1AG10ng'

o 150 | .
S 1 | with h; = B
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This approach is related to cross-validation technique (leave-one-out) for choosing
parameters of a classifier.
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K -Nearest Neighbor Approach to Density Estimation
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Find K neighbors, the density estimate is then p ~ 1/V where V is the volume of a
minimum cell containing K NNs. Example (p ~ inverse distance to K-th NN, same
1000 samples as before):
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K-Nearest Neighbor Approach to
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Outline:
Definition
Properties
Asymptotic error of NN classifier
Error reduction by edit operation on the training class

Fast NN search
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K-NN Classification Definition

Assumption:

Training set T = {(x1, k1), (x2, k2), ..., (xn, kn)}. There are R classes (letter K is
reserved for KNN in this lecture)

A distance function d : X x X — RE)L

Algorithm:

1. Given z, find K points S = {(z, k}), (x5, k3), ..., (¢, k%) } from the training set T
which are closest to x in the metric d:

S —{( ), (2, sy (@i K} = L@, i), (s ), oo (2 )} (11)
r;: the rank of (x;, k;) € T as given by the ordering d(x, x;) (12)

2. Classify x to the class £ which has majority in S

k= argmaxZ[[k' = {] (z}, k) e S (13)
I€R
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K-NN Example (1)

3.7e-04 7.3e-04
‘ |
3.2e-05 6.4e-05
—  p(z1)
—  p(z]2)

optimal decision
boundary

@

Consider the two distributions
shown. The priors are assumed

to be the same,
p(1) = p(2) =0.5.

Bayesian optimal decision
boundary is shown by the black

circle.
Bayesian error is eg = 0.026.

12/28
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K-NN Example (2)

13/28

K =1, error e=0.044 K =3, error e =0.034 K =5, error e =0.032

N = 100 samples for each class. Bayes error eg = 0.026.
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K-NN Example (3)

@

The results depend on the training set (result of a random process.)
Each of the training sets 71, T2, 73 contain 100 points for each class.

T

T2

Ts

14/28

K =1, error ¢e=0.044

K =1, error e=0.038

K =1, error e=0.043
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K-NN Properties C

Trivial implementation (— good baseline method)

1-NN: Bayes error €p is the lower bound on error of classification eny (in the
asymptotic case N — o0.) Higher bounds can also be constructed, e.g. eny < 2¢p

Slow when implemented naively, but can be sped up (Voronoi, k-D trees)

High computer memory requirements (but training set can be edited and its cardinality
decreased)

How to construct the metric d? (problem of scales in different axes)
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K-NN : Speeding Up the Classification
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Sophisticated algorithms for NN search:
e Classical problem in Comp. Geometry
o k-D trees

Removing the samples from the training class 7 which do not change the result of
classification

e Exactly: using Voronoi diagram
e Approximately: E.g. use Gabriel graph instead of Voronoi

e Condensation algorithm: iterative, also approximate.
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Condensation Algorithm
17/28

Input: The training set 7.

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from 7 to A. Insert the
rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an x € B is mis-classified,
move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for INN classification)
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Condensation Algorithm, Example

The dataset after the condensation.

The training dataset Shown with the new decision boundary.

18/28
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1-NIN Classification Error

Recall that a classification error € for strategy q: X — R is computed as

= [ Y sabde= [ Y pla) s = [ c@pads. (19

kiq(a) £k kiq(x) 7k

€(x)

We know that the Bayesian strategy gp decides for the highest posterior probability
q(x) = argmax;, p(k|x), thus the partial error eg(x) for a given x is

eg(r) =1— mgxp(k\a:) : (15)

Assume the asymptotic case. We will show that the following bounds hold for the partial
error ey () and classification error €xy in the 1-NN classification,

ep(r) < enn(z) < 2ep(e) — grgep(a), (16)
€B§€NN§2€B—%€QB, (17)

where €g is the Bayes classification error and R is the number of classes.
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1-NN Classification Error, Example (1) C
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i

Consider two distributions as shown, a small interval d on an x-axis, and a point s € 0. Let
the class priors be p(1) = p(2) = 0.5. Assume § — 0 and number of samples N — oc.

Observe the following:

p(l]s) =0.8, p(2]s) =0.2, (18)
p(NN=1]s) =p(1l]s) =0.8, p(NN=2]s)=p(2|s) =0.2, (19)

where p(NN =k|s) is the probability that the 1-NN of s is from class k (k = 1,2) and thus
s is classified as k.
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1-NN Classification Error, Example (2) C 2
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1{s) =0.80
g&;s;:ogo 0 — pl=ll)
N — p(il?’Q)
The error enn(s) at s is

enn(s) = p(1]s) p(NN =2ls) + p(2[s) p(NN =1]s) (20)
— 1— p(1]s) p(NN =1]3) — p(2] s) p(NN =2|5) (21)
=1-p*(1]s) — p°(2]s). (22)

Generally, for R classes, the error will be

env(s) =1-) p(kls). (23)

keR
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1-NN Classification Error, Example (3)

The two distributions and the partial errors
(the Bayesian error eg(x) and the 1-NN error enn(z))

0.5

0.4}
0.3}
0.2}
0.1

0.0

— €p(2)

enn(T)

22/28
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1-NN Classification Error Bounds (1) C
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Let us now return to the inequalities and prove them:
ep(z) < enn(z) < 2ep(z) — sogep(x), (24)
The first inequality follows from the fact that Bayes strategies are optimal.
To prove the second inequality, let P(x) denote the maximum posterior for x:
P(x) = mgxp(k\:c) (25)
= ep(x)=1— P(x). (26)

Let us rewrite the partial error ey () using the Bayesian entities P(x) and g(x):

env(z) =1-) p°(klz)=1-P*(x)— ) p*(klz) (27)

keR k#q(x)

We know that p(q(x)|z) = P(x), but the remaining posteriors can be arbitrary. Let us
consider the worst case. i.e. set p(k|x) for k # q(x) such that Eq. (27) is maximized. This
will provide the higher bound.
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1-NN Classification Error Bounds (2) C i
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There are the following constraints on p(k|x) (k # q(x)):
> p(klz)+P(x) =1  (posteriors sum to 1) (28)
k#q(x)
> p*(k|z) — min (29)
k#q(x)

It is easy to show that this optimization problem is solved by setting all the posteriors to the
same number. Thus,

1—P(x) ep(x)

plkle) = ——— = P (k£ g(x) (30)

The higher bound can then be rewritten in terms of the Bayes partial error
eg(r) =1— P(x):

(@) <1—P2a)— 3 p(kla) =1— (1 —en(@))? — (R—1)—BEL— (31)
k#q(x)
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1-NN Classification Error Bounds (3) C 2
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() S1-P@) = Y 2kle) =1 (- ep@)? - 2 (3)
After expanding this, we get o
nv() < 1- (1 = ena))? — 20 (33
=11+ 2e5(2) — () ~ o) (34)
= 2e(e) — o) (35

Note that for R = 2, the bound is tight because using eg(z) =1 — P(z) in Eq. (32) gives

(1 - P(x))’

eNN(x) S 1—P2(£U)— 1

= ENN(ZL‘) . (36)
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1-NN Classification Error Bounds (4) C

The inequality for the local errors has been proven:
GNN<£C) S 263(33) — 6%(%)% (37)

Is there a similar higher bound for the classification error ény = [ enn(z)p(x)dx, based on
the Bayes error ég = [ ep(x)p(z)dz?
Multiplying Eq. (38) by p(x), and integrating, gives

eEny < 2ég(x) — L e5(z)p(x)de (38)

Let us use the known identity and inequality (where F (-) is the expectation operator)

var(z) = E (z%) — E* (x), var(z) > 0 = E(x*) > E*(2) (39)

Thus, [ €% (z)p(x)de > ([ EB(ZU)p(ZIZ‘)dZC)Q, and

eny < 2€p(x) — R e5(z)p(x)dr < 2ep(z) — RR 1623 :

] (40)
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K-NN Classification Error Bound
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It can be shown that for K-NN, the following inequality holds:

EKNN < €p + E]_NN/V K const (41)
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Edit algorithm
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The primary goal of this method is to reduce the classification error (not the speed-up of
classification.)

Input: The training set 7.

Algorithm
1. Partition 7 to two sets, Aand B (7T =AUB, ANB=10.)

2. Classify samples in B using KNN with training set A. Remove all samples from B
which have been mis-classified.

Output: B the training set for 1NN classification.

Asymptotic property: .

Cedit = EB1 _ (42)
— EKNN
If €xnn is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same

performance as Bayesian Classification.)
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