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L
- D
Bayesian Decision Theory C

Recall:

X set of observations

K set of hidden states

D set of decisions

pxr: X X K — R: joint probability
W: K x D — R: loss function,

q: X — D: strategy

R(q): risk:
R(g) =) > pxx(zk) Wik q(x)) (1)

Bayesian strategy g*:

¢* = argmin R(q) (2)
qe X —D
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Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the
necessity to know all the probabilities and the loss function.

The loss function W must make sense, but in many tasks it wouldn't

e medical diagnosis task (W: price of medicines, staff labor, etc. but what penalty in
case of patient’s death?) Uncomparable penalties on different axes of X.

e nuclear plant
e judicial error

The prior probabilities px (k): must exist and be known. But in some cases it does not
make sense to talk about probabilities because the events are not random.
o K ={1,2} = {own army plane, enemy plane};
p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don't.
The conditionals may be subject to non-random intervention; p(x | k, z) where
z € Z =41,2,3} are different interventions.

e a system for handwriting recognition: The training set has been prepared by 3
different persons. But the test set has been constructed by one of the 3 persons
only. This cannot be done:

() p(z|k) = Zp p(z |k, 2) (3)
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Neyman Pearson Task

K = {D, N} (dangerous state, normal state)

X set of observations

Conditionals p(x | D), p(x | N) are given

The priors p(D) and p(N) are unknown or do not exist
q: X — K strategy

The Neyman Person Task looks for the optimal strategy ¢* for which

i) the error of classification of the dangerous state is lower than a predefined threshold ép
(0 < ép < 1), while

ii) the classification error for the normal state is as low as possible.

This is formulated as an optimization task with an inequality constraint:

q" = argmin Z p(x|N) (4)
g X—K 2:q(x)#N
subject to: Z p(x|D) < ép. (5)

x:q(x)#D
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Neyman Pearson Task

(copied from the previous slide:)

A strategy is characterized by the classification error values ey and ep:

N = Z p(x|N) (false alarm)

z:q(xz)#N

€p = Z p(x |D) (overlooked danger)
z:q(z)#D
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Example: Male/Female Recognition (Neyman Pearson) (1)

@

7/26

An aging student at CTU wants to marry. He can’t afford to miss recognizing a girl when he
meets her, therefore he sets the threshold on female classification error to ep = 0.2. At the

same time, he wants to minimize mis-classifying boys for girls.

K = {D,N} = {F, M} (female, male)
measurements X = {short, normal, tall} x {ultralight, light, avg, heavy}

Prior probabilities do not exist.

Conditionals are given as follows:

p(z|F) p(z|M)
short || .197 | .145 | .094 | .017 short || .011 | .005 | .011 | .011
normal || .077 | .299 | .145 | .017 normal || .005 | .071 | .408 | .038
tall || .001 | .008 | .000 | .000 tall || .002 | .014 | .255 | .169
= o < = — >
o0 > 20 >
2| 2|5 |8 2|2 |5 |8
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Neyman Pearson : Solution

The optimal strategy g* for a given x € X is constructed using the likelihood ratio %.
Let there be a constant 1 > 0. Given this u, a strategy q is constructed as follows:
p(z |N)
>u = q(xr)=N, 9
oD, (2) 9)
p(z|N)
<p = gq(z)=D. 10
oD, (2) (10)

The optimal strategy g* is obtained by selecting the minimal x for which there still holds
that ep < €p.

Let us show this on an example.
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Example: Male/Female Recognition (Neyman Pearson) (2)

p(z|F)
short || .197 | .145 | .094 | .017
normal || .077 | .299 | .145 | 017
tall || .001 | .008 | .000 | .000
5| £ |2 | 3
= — ® =

r(z) = p(z|M)/p(z|F)

p(z|M)
short || .011 | .005 | .011 | .011
normal || .005 | .071 | .408 | .0383
tall || .002 | .014 | .255 | .169
=2 5|23
- - =

short || 0.056 | 0.034 | 0.117 | 0.647
normal || 0.065 | 0.237 | 2.814 | 2.235
tall || 2.000 | 1.750 00 00

2 - -

| 5 | ® | 3

5 — © <

rank order of p(x|M)/p(x|F)
short || 2 | 1 | 4 | 6
normal || 3 | 5 [ 10| 9
tall || 8 | 7 | 11 | 12

-+ - >

25| @8

1| = <

Here, different ©'s can produce 11 different strategies.

First, let us take 2.814 < i < 00, e.g. = 3. This produces a strategy ¢*(z) = F
everywhere except where p(x|F) = 0. Obviously, classification error eg for F is g = 0, and

em = 1 — .255 — .169 = .576.

9/26
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Example: Male/Female Recognition (Neyman Pearson) (3)

10/26
p(z|F) p(z|M)
short || .197 | .145 | .094 | .017 short || .011 | .005 | .011 | .011
normal || .077 | .299 | .145 | .017 normal || .005 | .071 | .408 | .038
tall || .001 | .008 | .000 | .000 tall || .002 | .014 | .255 | .169
- - - = - =
25|23 B 5|23
= — < S — <
r(x) = p(z|M)/p(x|F) rank, and ¢*(z) = {F,M} for y = 2.5
short || 0.056 | 0.034 | 0.117 | 0.647 short 2 1 4 6
normal || 0.065 | 0.237 | 2.814 | 2.235 normal 3 5 | 10 0
tall || 2.000 | 1.750 00 00 tall 3 7 | 11 12
=) - = =) - =
2 5 | ¥ | 3 5| Y 5
Next, take i which satisfies
g < 1 < T10 (e.g. w = 25) (].].)

(where 7; is the likelihood ratios indexed by its rank.)

Here, eg = .145, and ¢y = 1 — .255 — .169 — 408 = .168.



http://cmp.felk.cvut.cz

@ 0
Example: Male/Female Recognition (Neyman Pearson) (4) C
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p(z|F) p(z|M)
short || .197 | .145 | .094 | .017 short || .011 | .005 | .011 | .011
normal || .077 | .299 | .145 | .017 normal || .005 | .071 | .408 | .038
tall || .001 | .008 | .000 | .000 tall || .002 | .014 | .255 | .169
= + > = - >
o0 > Q0 >
2| 2|5 |8 2| 2|5 |8
r(x) = p(z|M)/p(x|F) rank, and ¢*(z) = {F,M} for yp = 2.1
short || 0.056 | 0.034 | 0.117 | 0.647 short 2 1 4 §
normal || 0.065 | 0.237 | 2.814 | 2.235 normal 3 5 | 10 0
tall || 2.000 | 1.750 00 00 tall 3 7 | 11 12
= - o > < | v o0 >
2| 2| 7 | 8 227 3
Do the same for p satisfying
rg < pu<rg (eg pu=21) (12)

= ¢g = .162, and ¢y = 0.13.
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Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for F and M, for ji; = "7 and pig = 0.

1.0

O
S

O
Sk

o
=

classification error

GD :0.2

o
N

O
=

0 1 2 3 4 5 6 7 8 9 10

(4

The optimum is reached for 75 < u < rg; ef = .188, ey = .103

12/26
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Neyman Pearson Solution : lllustration of Principle C
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Lagrangian of the Neyman Pearson Task is
Lig)= Y  pIN)+u| >  p@|D)—ép (13)
f:q(a:):D ) x:q(x)=N
“T-Y s | Y pe@lD) | - pe (14)
x:q(x)=N x:q(x)=N
=1 —peo+ Y {pp(|D)—p(x|N)} (15)
x: q(x)=N Tzrx)

If T'(x) is negative for an x then it will decrease the objective function and the optimal
strategy ¢* will decide ¢*(z) = N. This illustrates why the solution to the Neyman Pearson
Task has the form

p(z |N) _
o@D o H T q(z) =N, (9)
p(z |N) _
p(z | D) <pw = q(z)=D. (10)
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|
Neyman Pearson : Derivation (1) C
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— qr)?gl Z p(x |N) subject to: Z p(x|D) < ép. (16)
x:q(x)#N x:q(x)#D
Let us rewrite this as
0= min az)p(z | N) subject to: Y [l —a(z)lp(x|D) <é.  (17)
zeX xeX
and:  «az) € {0,1} Vx € X (18)

This is a combinatorial optimization problem. If the relaxation is done from a(x) € {0,1} to
0 < a(x) <1, this can be solved by linear programming (LP). The Lagrangian of this
problem with inequality constraints is:

L(a(z1), a(za), ..., o =) a(z)p(z|N)+ p <Z[1 — af(z)]p(z | D) — eD> (19)

reX reX

=Y wo(@)a(z) + Y p(x)(alz) —1) (20)

re X reX
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Neyman Pearson : Derivation (2) -
15/26
L(a(z1), a(®s), ..,a(zy)) = Y a(@)p(z|N) + p (Z 1 —afz)lp(z | D) — €D> (19)
=Y po()a(@) + Y p(z)(a(z) — 1) (20)
The conditions for optimality are (Vz € X):
s = P IN) =@ D) = pofe) + pua(e) =0, (21)
>0, po(x) >0, pri(z) >0, 0<alx) <1, (22)
po(@)o(x) = 0, pr(x)(afz) —1) =0, 1 —a(z)lp(z|D) — €D> = 0. (23)
Case-by-case analysis:
case implications
p=20 L minimized by a(x) =0 Vx
p#0,a(@) =0 | m(@)=0= po(r) =p@|N) —pp(z|D) = p(z|N)/p(z|D) < p
p# 0,004(96) =1 | po(x) =0= p(x) = —[p(x|N) — pp(xz|D)] = p(z|N)/p(z|D) = p
0Lty <1 | Hol@) = () =0 pa|N)/plw|D) =
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Neyman Pearson : Derivation (3)
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Case-by-case analysis:
case implications
= L minimized by a(x) =0 Vx
p#0,a(@) =0 | m(x)=0= po(r) =p@|N) —pp(xz|D) = p(z|N)/p(z|D) < p
b 0,004(96) =1 | po(®) =0= p(x) = —[p(x|N) — pp(x|D)] = p(z|N)/p(z|D) = u
Lty et | Hol@) = m() =0 = ple|N)/p(e]D) =

Optimal Strategy for a given 1 > 0 and particular z € X:

(< = g(z) =D (as a(z) = 0)
§ > = q(x) =N (as a(x) =1) (24)
| =41 = LP relaxation does not give the desired solution, as a ¢ {0, 1}
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Neyman Pearson : Note on Randomized Strategies (1) C
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Consider:
p(z|D) p(z|N) r(z) = p(z|N)/p(z|D)
X1 X2 X3 L1 X2 X3 X1 X2 3
0.9 | 0.09 | 0.01 0.09 | 0.9 | 0.01 0.1 | 10 1
and ep =0.03.

q1: (r1,29,23) — (D,D,D) = €p=0.00, ey = 1.00
qo - (5131,562,%3) — (D, D, N) = €Ep = 001, en = 0.99
no other deterministic strategy q is feasible, that is all other ones have ep > €p

g2 is the best deterministic strategy but it does not comply with the previous basic
result of constructing the optimal strategy because it decides for N for likelihood ratio 1
but decides for D for likelihood ratios 0.01 and 10. Why is that?

we can construct a randomized strategy which attains €p and reaches lower ey:

(25)

q(x1) = q(z3) =D, q(x2) = {N 1/3 of the time

D 2/3 of the time

For such strategy, ep = 0.03,en = 0.7.
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Neyman Pearson : Note on Randomized Strategies (2)

@
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This is not a problem but a feature which is caused by discrete nature of X (does not

happen when X is continuous).

This is exactly what the case of = p(x |N)/p(z | D) is on slide 15.
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Neyman Pearson : Notes (1)

The task can be generalized to 3 hidden states, of which 2 are dangerous,
K = {N,D1,Ds}. It is formulated as an analogous problem with two inequality
constraints and minimization of classification error for N.

Neyman’'s and Pearson’s work dates to 1928 and 1933.

A particular strength of the approach lies in that the likelihood ratio r(x) or even

p(x | N) need not be known. For the task to be solved, it is enough to know the p(x|D)
and the rank order of the likelihood ratio

(to be demonstrated on the next page)
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Neyman Pearson : Notes (2)

Consider a medicine for reducing weight. The normal population has a distribution oM
weight p(z | D) as shown in blue. Let it be normal, p(z |D) = N (x| o, o). The
distribution of weights after 1 month of taking the medicine is assumed to be normal as
well, with the same variance but uknown shift of mean to the left,

p(x|N) =N (x| p1,0), with uy < po but otherwise unknown (shown in red).

The likelihood ratio is

r(x) = expﬁ (— (@ — p1)? + (x — po)?) = exp (=5(p1 — po)x + const). It is thus
decreasing (monotone) with x (irrespective of uq, p1 < uo).

Setting ép = 0.02, we go along the decreasing () and find the point ¢, for which
[Z"7 p(x| D) = &p = 0.02 (0.02-quantile). Note that the threshold x on 7(z) is still

uknown as p(x | N) is unknown.

My Linr Mo
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Minimax Task

21/26
K ={1,2,..,N}
X set of observations
Conditionals p(x | k) are known Vk € K
The priors p(k) are unknown or do not exist
q: X — K strategy
The Minimax Task looks for the optimum strategy ¢* which minimizes the classification
error of the worst classified class:
¢* =argminmaxe(k), where (26)

¢:X—K kEK

k)= > x|k (27)

x: q(x)Fk

Example: A recognition algorithm qualifies for a competition using preliminary tests.
During the final competition, only objects from the hardest-to-classify class are used.

For a 2-class problem, the strategy is again constructed using the likelihood ratio.
In the case of continuous observations space X, equality of classification errors is
attained: €; = €9

The derivation can again be done using Linear Programming.
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Example: Male/Female Recognition (Minimax) C
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Classification errors for F and M, for ji; = "7 and pig = 0.
1.0
e===  max(€p,€xs )
0.8‘ - EF
g - fum
o
S 0.6/
9
m
O
< 0.4
7))
©
G
0.2
0.0

The optimum is attained for i = 8, e = .162, ¢y = .13. The corresponding strategy is as
shown on slide 11.
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Minimax: Comparison with Bayesian Decision with
Unknown Priors 23/26

Consider the same setting as in the Minimax task, but let the priors p(k) exist but be
unknown.

The Bayesian error € for strategy q is

e=> > pxk)=> pk) > plx|k) (28)

k x:q(x)#k k :\cq(m);ék:

We want to minimize € but we do not know p(k)'s. What is the maximum it can
attain? Obviously, the p(k)'s do the convex combination of the class errors €(k); the
maximum Bayesian error will be attained when p(k) = 1 for the class k£ with the highest
class error e(k).

Thus, to minimize the Bayesian error € under this setting, the solution is to minimize
the error of the hardest-to-classify class.

Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors
lead to the same solution.
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Wald Task (1)

24/26
Let us consider classification with two states, K = {1, 2}.

We want to set a threshold ¢ on the classification error of both of the classes: ¢; < ¢,
€y < €.

As the previous analysis shows (Neyman Pearson, Minimax), there may be no feasible
solution if € is set too low.

That is why the possibility of decision “do not know" is introduced. Thus D = K U {?}

A strategy q : X — D is characterized by:

€1 = Z p(x|1) (classification error for 1) (29)
z: q(x)=2

€3 = Z p(x|2) (classification error for 2) (30)
z: q(z)=1

K1 = Z p(x|1) (undecided rate for 1) (31)
z: q(z)=1

Ko = Z p(x|2) (undecided rate for 2) (32)

x:q(x)="
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Wald Task (2)
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The optimal strategy ¢*:
* = argmin max k; 33
4 q:)%'—>D i={1,2} ( )
subject to: €1 <€, €5 <€ (34)
The task is again solvable using LP (even for more than 2 classes)
The optimal solution is again based on the likelihood ratio
p(z|1)
r(x) = (35)
D= a2

The optimal strategy is constructed using suitably chosen thresholds p; and pup such
that:

i

2 forr(x) <y
q(x) =491 forr(x) > up (36)
7 for w < r(x) < pp

\
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Example: Male/Female Recognition (Wald)

Solve the Wald task for e = 0.05.

p(z|F) p(z|M)

short || .197 | .145 | .094 | .017 short || .011 | .005 | .011 | .011
normal || .077 | .299 | .145 | .017 normal || .005 | .071 | .408 | .038
tall || .001 | .008 | .000 | .000 tall || .002 | .014 | .255 | .169
+ - > = + 2>
25|88 25|88

5 = < = — =

r(z) = p(z/M)/p(z|F) rank, and ¢*(x) = {F,M, 7}

short || 0.056 | 0.034 | 0.117 | 0.647 short 2 1 4 ¢
normal || 0.065 | 0.237 | 2.814 | 2.235 normal 3 5 110 9
tall || 2.000 | 1.750 00 00 tall 8 7 | 11 | 12
e - ;‘ = - o0 ;*

Result: ey = 0.032, ¢f =0, km = 0.544, kp = 0.487

(rg < py < s, 110 < oy, < 00)

26/26



http://cmp.felk.cvut.cz

	First page
	Lecture Outline
	Bayesian Decision Theory
	Limitations of the Bayesian Decision Theory
	Neyman Pearson Task
	Neyman Pearson Task
	Example: Male/Female Recognition (Neyman Pearson) (1)
	Neyman Pearson : Solution
	Example: Male/Female Recognition (Neyman Pearson) (2)
	Example: Male/Female Recognition (Neyman Pearson) (3)
	Example: Male/Female Recognition (Neyman Pearson) (4)
	Example: Male/Female Recognition (Neyman Pearson) (5)
	Neyman Pearson Solution : Illustration of Principle
	Neyman Pearson : Derivation (1)
	Neyman Pearson : Derivation (2)
	Neyman Pearson : Derivation (3)
	Neyman Pearson : Note on Randomized Strategies (1)
	Neyman Pearson : Note on Randomized Strategies (2)
	Neyman Pearson : Notes (1)
	Neyman Pearson : Notes (2)
	Minimax Task
	Example: Male/Female Recognition (Minimax)
	Minimax: Comparison with Bayesian Decision with Unknown Priors
	Wald Task (1)
	Wald Task (2)
	Example: Male/Female Recognition (Wald)
	Last page

