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Bayesian Decision Making. Basic Concepts.

An object (situation) is described by two parameters:

x which is observable; called observation, measurement, or ”feature vector”.

k which is unobservable; called hidden parameter, state, state-of-nature or “class”.

X is a finite set of observations, x ∈ X.

K is a finite set of hidden states, k ∈ K.

D is a finite set of possible decisions (actions).

pXK : X ×K → R is the joint probability that the object is in the state k and the
observation x is made.

W : K ×D → R is a penalty (loss) function, W (k, d), k ∈ K, d ∈ D is the penalty paid in
for the object in the state k and the decision d made.

q : X → D is a decision function (rule, strategy) assigning for each x ∈ X the decision
q(x) ∈ D.
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Formulation of the Bayesian Decision Problem.

Given the sets X, K and D, the joint probability pXK : X ×K → R and the penalty
function W : K ×D → R, find the strategy q : X → D which minimises the expectation of
W (k, q(x)):

R(q) =
∑
x∈X

∑
k∈K

pXK(x, k) W (k, q(x)) .

The quantity R(q) is called the the Bayesian risk. The solution to the Bayesian problem is
the Bayesian strategy q∗ minimizing the Bayesian risk.

The formulation can be easily extended to infinite X, K and D by replacing summation
with integration and probability with probability density.

Notes:
• The probability pXK(x, k) is often expressed as pXK(x, k) = pXk(x|k) ∗ pK(k)

• The standard notation for joint and conditional probabilities is ambiguous. Are p(x, k) and
p(x|k) respectively a number, a function of a single variable or a function of two variables?
Schlesinger disambiguates with subscripts: pXK(x, k) is a function of two variables,
pXk(x|k) is a function of a single variable x, and pxk(x, k) is a single real number.
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Expressing the Bayes risk via the partial risk.

R(q∗) = min
q∈X→D

∑
x∈X

∑
k∈K

pXK(x, k)W (k, q(x))

R(q∗) =
∑
x∈X

min
q(x)∈D

∑
k∈K

pXK(x, k)W (k, q(x))

R(q∗) =
∑
x∈X

min
q(x)∈D

p(x)
∑
k∈K

pK|X(k|x)W (k, q(x))

R(q∗) =
∑
x∈X

p(x)R(x, d∗)

where
R(x, d∗) =

∑
k∈K

pK|X(k |x) W (k, d∗) .

is the conditional (on x) mathematical expectation of the penalty called partial risk;
R(x, d∗) ≤ R(x, d), d ∈ D, i.e. q∗(x) = d∗.
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Comments on the Bayesian Decision Problem.

Bayesian recognition is decision-making, where

� Decisions do not influence the state of nature (c.f. Game T., Control T.).

� A single decisions is made, issues of time are ignored in the model (unlike in Control
Theory where decisions are typically taken continuously and in real-time)

� Cost of obtaining measurements is not modelled (unlike in Sequential Decision Theory).

The hidden parameter k (class information) is considered not observable. Common
situations are:

� k could be observed, but at a high cost.

� k is a future state (e.g. of petrol price) and will be observed later.

It is interesting to ponder whether a state can ever be genuinely unobservable.

Classification is a special case of the decision-making problem where the set of decisions D
and hidden states K coincide.
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Generality of the Bayesian task formulation.

Note that the observation x can be a number, symbol, function of one or two variables, a
graph, algebraic structure, e.g.:

Application Measurement Decisions
value of a coin in a slot machine xεRn value
optical character recognition 2D bitmap, intensity image words, numbers
license plate recognition gray-level image characters, numbers
fingerprint recognition 2D bitmap, gray-level image personal identity
speech recognition x(t) words
EEG, ECG analysis x̄(t) diagnosis
forfeit detection various {yes, no}
speaker identification x(t) personal identity
speaker verification x(t) {yes, no}

Two general properties of Bayesian strategies:

� Deterministic strategies are always better than randomized ones.

� Each Bayesian strategy corresponds to separation of the space of probabilities into
convex subsets.
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Bayesian Strategies are Deterministic

Instead of q : X → D consider stochastic strategy (probability distributions) qr(d |x).

THEOREM

Let X, K, D be finite sets, pXK : X ×K → R be a probability distribution, W : K ×D → R
be a penalty function. Let qr : D ×X → R be a stochastic strategy, i.e a strategy that
selects decisions d with probability qr(d|x). The risk of the stochastic strategy is:

Rrand =
∑
x∈X

∑
k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) .

In such a case there exists the deterministic strategy q : X → D with the risk

Rdet =
∑
x∈X

∑
k∈K

pXK(x, k)W
(
k, q(x)

)
which is not greater than Rrand.

Note that qr(d|x) has the following properties for all x: (i)
∑
d∈D qr(d |x) = 1 and

(ii)qr(d |x) ≥ 0, d ∈ D.
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PROOF #1 (Bayesian strategy are deterministic)

Comparing the risks associated with deterministic and stochastic strategies

Rrand =
∑
x∈X

∑
k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) , Rdet =
∑
x∈X

∑
k∈K

pXK(x, k)W
(
k, q(x)

)
it is clear it is sufficient to prove that for every x∑

k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) ≥
∑
k∈K

pXK(x, k)W
(
k, q(x)

)
Let us denote the losses associated with deterministic decision d as
αd =

∑
k∈K pXK(x, k)W

(
k, d
)
and let the loss of the best deterministic strategy be

denoted αd∗ = mind∈D αd. Expressing the stochastic loss in terms of αd we obtain:∑
k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) =
∑
d∈D

qr(d |x)
∑
k∈K

pXK(x, k)W (k, d) =
∑
d∈D

qr(d |x)αd

To prove the theorem, it is sufficient to show that
∑
d∈D qr(d |x)αd ≥ αd∗:

∀d ∈ D : αd ≥ αd∗ ⇒
∑
d∈D

qr(d |x)αd ≥
∑
d∈D

qr(d |x)αd∗ = αd∗
∑
d∈D

qr(d |x) = αd∗ 2

.
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PROOF #2 (Bayesian strategy are deterministic)

Rrand =
∑
x∈X

∑
d∈D

qr(d |x)
∑
k∈K

pXK(x, k)W (k, d) .∑
d∈D qr(d |x) = 1, x ∈ X, qr(d |x) ≥ 0, d ∈ D, x ∈ X.

Rrand ≥
∑
x∈X

min
d∈D

∑
k∈K

pXK(x, k)W (k, d) holds for all x ∈ X, d ∈ D . (1)

Let us denote by q(x) any value d that satisfies the equality∑
k∈K

pXK(x, k)W
(
k, q(x)

)
= min
d∈D

∑
k∈K

pXK(x, k)W (k, d) . (2)

The function q : X → D defined in such a way is a deterministic strategy which is not worse
than the stochastic strategy qr. In fact, when we substitute Equation (2) into the
inequality (1) then we obtain the inequality

Rrand ≥
∑
x∈X

∑
k∈K

pXK(x, k)W
(
k, q(x)

)
.

The risk of the deterministic strategy q can be found on the right-hand side of the preceding
inequality. It can be seen that Rdet ≤ Rrand holds.
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Convex subspaces. Special case: 2 hidden states.

� Hidden state assumes two values only, K = {1, 2}.

� Only conditional probabilities pX|1(x) and pX|2(x) are known.

� The a priori probabilities pK(1) and pK(2) and penalties W (k, d),
k ∈ {1, 2}, d ∈ D, are not known.

� In this situation the Bayesian strategy cannot be created.
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Likelihood Ratio (1)

If the a priori probabilities pK(k) and the penalty W (k, d) were known then
the decision q(x) about the observation x ought to be

q(x) = argmin
d

(
pXK(x, 1)W (1, d) + pXK(x, 2)W (2, d)

)
= argmin

d

(
pX|1(x) pK(1)W (1, d) + pX|2(x) pK(2)W (2, d)

)
= argmin

d

(pX|1(x)
pX|2(x)

pK(1)W (1, d) + pK(2)W (2, d)
)

= argmin
d

(
γ(x) c1(d) + c2(d)

)
.

γ(x) – likelihood ratio.
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Likelihood Ratio (2) – linearity, convex subset of R

The subset of observations X(d∗) for which the decision d∗ should be made
is the solution of the system of inequalities

γ(x) c1(d∗) + c2(d∗) ≤ γ(x) c1(d) + c2(d) , d ∈ D \ {d∗} .

� The system is linear with respect to the likelihood ratio γ(x).

� The subset X(d∗) corresponds to a convex subset of the values of the
likelihood ratio γ(x).

� As γ(x) are real numbers, their convex subsets correspond to the
numerical intervals.
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Likelihood Ratio (3)

Note:
There can be more than two decisions d ∈ D, |D| > 2 for only two states,
|K| = 2.

Any Bayesian strategy divides the real axis from 0 to ∞ into |D| intervals
I(d), d ∈ D. The decision d is made for observation x ∈ X when the
likelihood ratio γ = pX|1(x)/pX|2(x) belongs to the interval I(d).

More particular case which is commonly known:
Two decisions only, D = {1, 2}. Bayesian strategy is characterised by a single
threshold value θ. For an observation x the decision depends only on
whether the likelihood ratio is larger or smaller than θ.
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Example. 2 Hidden States, 3 Decisions

Object: a patient examined by the physician.

Observations X: some measurable parameters (temperature, . . . ).

2 unobservable states K = {healthy, sick}.

3 decisions D = {do not cure, weak medicine, strong medicine}.

Penalty function W : K ×D → R

W (k, d) do not cure weak medicine strong medicine
sick 10 2 0

healthy 0 5 10
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Space of probabilities Π

Consider a |K|-dimensional linear space Π.

The space Π has coordinate axes given by probabilities pX|1(x), pX|2(x),
. . . (in general pX|k(x), k ∈ K).

The set of observations X is mapped into positive hyperquadrant of Π. The
observation x ∈ X maps to the point pX|k(x), k ∈ K.

The interesting question how the whole subset X(d), d ∈ D, of the
observation space corresponding to one decision maps to Π.
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Cone, Convex Cone

The subset Π′ ⊂ Π is called a cone if απ ∈ Π′ for ∀ π ∈ Π′ and for ∀ α ∈ R,
α > 0.

If the subset Π′ is a cone and, in addition, it is convex then it is called a
convex cone.
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Convex Cones: the general case K > 2

Theorem:
Let X, K, D be three finite sets and let pXK : X ×K → R,
W : K ×D → R be two functions. Let π : X → Π be a mapping of the set
X into a |K|-dimensional linear space Π (space of probabilities); π(x) ∈ Π is
a point with coordinates pX|k(x), k ∈ K.

Let any decomposition of the positive hyperquadrant of the space Π into |D|
convex cones Π(d), d ∈ D, define the strategy q for which q(x) = d if and
only if π(x) ∈ Π(d). Then a decomposition Π∗(d), d ∈ D, exists such that
corresponding strategy q∗ minimises a Bayesian risk∑

x∈X

∑
k∈K

pXK(x, k)W (k, q(x)) .
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PROOF, Convex shape of classes in Π (1)

Let us create such cones. Enumerate decision d ∈ D by numbers n(d)∑
k∈K

pX|K(x) pK(k)W (k, d∗) ≤
∑
k∈K

pX|K(x) pK(k)W (k, d) , n(d) < n(d∗) ,

∑
k∈K

pX|K(x) pK(k)W (k, d∗) <
∑
k∈K

pX|K(x) pK(k)W (k, d) , n(d) > n(d∗) .
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PROOF, Convex shape of classes in Π (2)

Let us use coordinates in Π, πk = pX|k(x). The point π with coordinates πk, k ∈ K, has to
be mapped into the set Π(d∗), if∑

k∈K

πk pK(k)W (k, d∗) ≤
∑
k∈K

πk pK(k)W (k, d) , n(d) < n(d∗) ,

∑
k∈K

πk pK(k)W (k, d∗) <
∑
k∈K

πk pK(k)W (k, d) , n(d) > n(d∗) .

The set expressed in such a way is a cone, because if the point with coordinates πk, k ∈ K,
satisfies the inequalities then any point with coordinates απk, α > 0, satisfies the system
too.

The system of inequalities is linear with respect to variables πk, k ∈ K, and thus the set of
its solutions Π(d) is convex.
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Importance of Linear Classifiers.

� Theoretical importance, decomposition of the probability space into
convex cones.

� For some statistical models, the Bayesian or non-Bayesian strategy is
implemented by linear discriminant function.

� Some non-linear discriminant functions can be implemented as linear
after straightening the feature space.

� Capacity (VC dimension) of linear strategies in an n-dimensional space
is n+ 2. Thus, the learning task is correct, i.e., strategy tuned on finite
training multiset does not differ much from correct strategy found for a
statistical model.

� There are efficient algorithms to solve them.
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Two special cases of Bayesian Problems.

1. Minimisation of the probability of the incorrect estimation of the hidden
state (i.e. minimisation of classification error) is one the most common
recognition problems. We show that it is a special case of Bayes risk
minimisation.

2. Decision with the "reject" option, i.e., not known.
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Minimisation of the probability of incorrect decision. (1)

Consider the following problem:
• The object is in an unknown state k.
• The set of possible decisions D and of hidden states K coincide, D = K.
• The cost function assigns a unit penalty when q(x) 6= k occurs and no
penalty otherwise, i.e.

W
(
k, q(x)

)
=
{

0 if q(x) = k

1 if q(x) 6= k

The Bayesian risk

R(q) =
∑
x∈X

∑
k∈K

pXK(x, k) W
(
k, q(x)

)
=
∑
x∈X

pX(x)
∑
k 6=q(x)

pKx(k|x)

=
∑
x∈X

pX(x)(1− pxk(q(x)|x)

is then equal the probability of the situation q(x) 6= k (probability of
classification error) or 1 – probability of correct decision.
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Minimisation of the probability of incorrect decision. (2)

We have to determine the strategy q : X → K which minimises the risk, i.e.,

q(x) = argmin
k∈K

∑
k∗∈K

pXK(x, k∗) W (k∗, k)

= argmin
k∈K

pX(x)
∑
k∗∈K

pK|X(k∗ |x) W (k∗, k) = argmin
k∈K

∑
k∗∈K

pK|X(k∗ |x) W (k∗, k)

= argmin
k∈K

∑
k∗∈K\{k}

pK|X(k∗ |x)

= argmin
k∈K

( ∑
k∗∈K

pK|X(k∗ |x)− pK|X(k |x)
)

= argmin
k∈K

(
1− pK|X(k |x)

)
= argmax

k∈K
pK|X(k |x) .

The result shows that the a posteriori probability of each state k is to be calculated for the
observation x and the optimal decision is in favour of the most probable state. The the
maximum a posteriori strategy is the Bayesian strategy for the 0-1 loss function.

Dichotomy. In the situation with two possible decisions (and classes), the optimal decision
can be expressed as a sign of discriminative function g(x) = pk|x(1 |x)− pk|x(0 |x).
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Bayesian Strategy with the Reject Option (1)

Consider an examination where for each question there are three possible
answers: yes, no, not known. If your answer is correct, 1 point is added to
your score. If your answer is wrong, 3 points are subtracted. If your answer is
not known, your score is unchanged. What is the optimal Bayesian strategy
if for each question you know the probabilities that p(yes) is the right answer?

Note that adding a fixed amount to all penalties and multiplying all penalties
by a fixed amount does not change the optimal strategy. Adding 3 and
multiplying by 1/4 leads to 1 point for correct answer, 3/4 for not known
and 0 points of a wrong answer.

Any problem of this type can be transformed to an equivalent problem with
penalty 0 for the correct answer, 1 for the wrong answer, and ε for
not known. In realistic problems, ε ∈ (0, 1), since ε ≥ 1 means it is always
better to guess than to say not known; ε ≤ 0 states that saying not known
is preferred to giving the correct answer.
Let us solve the problem formally.
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Bayesian Strategy with Reject Option (2)

Let X and K be sets of observations and states, pXK : X ×K → R be a
probability distribution and D = K ∪ {not known} be a set of decisions.

Let us define W (k, d), k ∈ K, d ∈ D:

W (k, d) =


0, if d = k ,

1, if d 6= k and d 6= not known ,
ε, if d = not known .

Find the Bayesian strategy q : X → D. The decision q(x) corresponding to
the observation x has to minimises the partial risk,

q(x) = argmin
d∈D

∑
k∗∈K

pK|X(k∗ |x) W (k∗, d) .
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Bayesian Strategy with Reject Option (3)

Equivalent definition of partial risk

q(x) =

argmin
d∈K

R(x, d) , if min
d∈K

R(x, d) < R(x, not known) ,

not known , if min
d∈K

R(x, d) ≥ R(x, not known) .

There holds for mind∈K R(x, d)

min
d∈K

R(x, d) = min
d∈K

∑
k∗∈K

pK|X(k∗ |x) W (k∗, d)

= min
k∈K

∑
k∗∈K\{k}

pK|X(k∗ |x)

= min
k∈K

( ∑
k∗∈K

pK|X(k∗ |x)− pK|X(k |x)

)
= min
k∈K

(
1− pK|X(k |x)

)
= 1−max

k∈K
pK|X(k |x) .
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Bayesian Strategy with Reject Option (4)

There holds for R(x, not known)

R(x, not known) =
∑
k∗∈K

pK|X(k∗ |x) W (k∗, not known)

=
∑
k∗∈K

pK|X(k∗ |x) ε = ε .

The decision rule becomes

q(x) =

argmax
k∈K

pK|X(k |x) , if 1−max
k∈K

pK|X(k |x) < ε ,

not known , if 1−max
k∈K

pK|X(k |x) ≥ ε .
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Bayesian Strategy with Reject Option (5)

Strategy q(x) can be described as follows:

First, find the state k which has the largest a posteriori probability.

If this probability is larger than 1− ε then the optimal decision is k.

If its probability is not larger than 1− ε then the optimal decision is
not known .

http://cmp.felk.cvut.cz

	First page
	cre Bayesian Decision Making. Basic Concepts.
	cre Formulation of the Bayesian Decision Problem.
	cre Expressing the Bayes risk via the partial risk.
	cre Comments on the Bayesian Decision Problem. 
	cre Generality of the Bayesian task formulation.
	cre Bayesian Strategies are Deterministic
	cre PROOF #1 (Bayesian strategy are deterministic)
	cre PROOF #2 (Bayesian strategy are deterministic)
	color {red} Convex subspaces. Special case: 2 hidden states.
	color {red} Likelihood Ratio (1)
	color {red} Likelihood Ratio (2) -- linearity, convex subset of $Re $
	cre Likelihood Ratio (3)
	cre Example. 2 Hidden States, 3 Decisions
	cre Space of probabilities $mathbf {Pi }$ 
	cre Cone, Convex Cone
	color {red} Convex Cones: the general case $K>2$
	cre PROOF, Convex shape of classes in $mathbf {Pi }$ (1)
	cre PROOF, Convex shape of classes in $mathbf {Pi }$ (2)
	color {red} Importance of Linear Classifiers. 
	cre Two special cases of Bayesian Problems.
	cre Minimisation of the probability of incorrect decision. (1)
	cre Minimisation of the probability of incorrect decision. (2)
	cre Bayesian Strategy with the Reject Option (1)
	cre Bayesian Strategy with Reject Option (2)
	cre Bayesian Strategy with Reject Option (3)
	cre Bayesian Strategy with Reject Option (4)
	cre Bayesian Strategy with Reject Option (5)
	Last page

