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Let p(x|y,0) be probability density with unknown parameter 6. In the
following text, we will consider only one class (we will estimate the proba-
bility density of each class separately, i.e. we assume they are independent)
and use simplified notation p(x|@). Let’s have a training set

T={x1,...,2n}.

Members of set T' (called measurements or samples) are obtained by random
selection from distribution p(z|f). The measurements have to be indepen-
dent. Our goal is to find maximal likely estimate of parameter 6 given the
training set 7.

The quality of estimate 6 with respect to the training set 1" is measured
by conditional probability P(T'|6), called likelihood. Thanks to independency
of training samples the likelihood can be evaluated as
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Sometimes also the logarihmic form is used
n
L(T10) = Y _logp(xil6). (2)
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We are searching 6* which maximizes the likelihood

0* = argmax P(T|0) = argmax Hp(:c,\&) (3)
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1 Finding Maximum Likelihood Estimate

A transformation by logarithm keeps the point where the function has its
maximum, therefore we can transform equation (3)

0" = argmaleogp(miw) (4)
0 =1
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The term to be maximized is
L(T,0) = > log p(x;]6). (5)
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For convex L, the maximum is found at point where its derivation equals
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OL(T,0) <~ 0logp(xi|0)
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2 Example — One-Dimensional Normal Distribu-
tion

Let us look at the example of one-dimensional normal distribution
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Assume the standard deviation o known and training set 7' = {x1,...,z,}
given. We search for p such that
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By simplification and derivation we obtain
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This term is zero when
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Rearranging the term we arrive at result
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We found the maximum likelihood estimate of mean of normal proba-
bility distribution. Similarly, we can fix the mean g and solve for standard
deviation, obtaining the formula
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