Lecture 9: From program to executable
Linking and loading

Contents

Linker vs. loader
Linking the executable
Libraries

Loading executable
ELF — UNIX format

PE — windows program
Dynamic libraries

AE4B330SS Lecture 9/ Page 2 2014

AE4B330SS

Language 2 source code

Compiler front-end for language 1 Compiler front-end for language 2
Lexical Analyzer (Scanner) Lexical Analyzer (Scanner)
Syntax/Semantic Syntax/Semantic
Analyzer (Parser) Analyzer (Parser)
Intermediate-code Intermediate-code
Generator Generator
Non-optimized intermediate code Non-optimized intermediate code

| Intermediate code optimizer
Optimized intermediate code

/ \

Target-2
Code Generator

Target-1
Code Generator

Lecture 9/ Page 3

2014

Lexical and syntax analysis
ifinet >0 . 0)total+=net=*= {1 .,0++tax/7100.01)>:
Lexer

iflnet >0 . 0)to0otal+=-net= (1 .0+tax{100.01):

Parser
if
N = = NIL
/\
net 0 . 0 total #
/\
ne t +
/\
1.0 /
/\
t ax 100 .0

AE4B330SS Lecture 9/ Page 4 2014

Syntactic and semantic analysis

— Parser is doing syntactic and semantic analysis
— Parser can be generated automatically using tools: yacc or bison
+ yacc = Yet Another Compiler Compiler; bison is animal similar to yacc
— Parser are generated according to Grammar usually in Backus-Naur
Form (BNF)

— BNF — definition of address in BNF:

<postal-address>
<name-part>

<name-part> <street-address> <psc-part>
<personal-part> <last-name> <EOL>
<personal-part> <name-part>
<first-name>

<initial> "."

<street-name> <house-num> <EOL>

<PSC> “ “ <town-name> <EOL>

<personal-part>

<street-address>
<psc-part>

AE4B330SS Lecture 9/ Page 5 2014

Intermediate code

B _class is example of intermediate code for java
B ot of different types: - three-address code (often
abbreviated to TAC or 3AC)

Example of TAC representation

tl :=b * Db X = (-b + sqrt(bnr2 - 4*a*c)) / (2*a)
t2 (=4 * a

t3 = t2 * c

t4 := t1 - t3

ts = sqrt(t4)

té := 0 - Db

t7 := tb + t6

t8 (= 2 * a

t9 = t7 / t8

X = t9

» tl = 0 ; for (1 =0; 1 < 10; ++1) {b[i] = 1i*1i;}
» L1: if t1 >= 10 goto L2 ; conditional jump

» t2 = t1 * t1 ; square of 1

> t3 (= t1 * 4 ; word-align address

» t4 := b + t3 ; address to store 1*1i
> *t4 = t2 ; store through pointer
» t1 = t1 + 1 ; lncrease i

» goto L1 ; repeat loop

4

AE4B330SS Lecture 9/ Page 6 2014

Background
B Operating system is responsible for starting programs

B Program must be brought into memory and placed within a
process memory space for it to be executed

B User programs go through several steps before being run
B Linkers and loaders prepare program to execution

B Linkers and loaders enable to binds programmer’s abstract
names to concrete numeric values — addresses

AE4B330SS Lecture 9/ Page 7 2014

Linker vs. Loader

B Program loading — copy program from secondary storage
iInto main memory so it's ready to run
® In some cases it is copying data from disk to memory

® More often it allocate storage, set protections bits, arrange virtual
memory to map virtual addresses to disk space

B Relocation
® each object code program address started at 0

® |f program contains multiple subprograms all subprograms must
be loaded at non-overlapping addresses

® |[n many systems the relocation is done more than once

B Symbol resolution

® The reference from one subprogram to another subprogram is
made by using symbols

B [inker and loader are similar

B [oader does program loading and relocation
B Linker does symbol resolution and relocation
B There exists linking loaders

AE4B330SS Lecture 9/ Page 8 2014

Binding of Instructions and Data to Memory

B Compile time: If memory location is

AE4B330SS

kKnown a priori, absolute code can
be generated; must recompile code
If starting location changes

Load time: Must generate
relocatable code if memory location
IS not known at compile time

Execution time: Binding delayed until
run time if the process can be
moved during its execution from
one memory segment to another.
Need hardware support for address
maps (e.g., base and limit
registers).

Lecture 9/Page 9

other
object
modules

system
library

dynamicall
loaded
system
library

dynamic
linking

source
program

compiler or
assembler

object

module

compile
time

linkage
editor

load
maodule

loader

Y

in-memaory
binary
memory
image

load
time

execution
- time (run
time)

2014

Two pass linking

B Linker’s input is set of object files, libraries, and
command files.

B Output of the linker is executable file, link/load map
and/or debug symbol file

M Linker uses two-pass approach

M Linker first pass
® Scan from input files segment sizes, definitions and references
® Creates symbol table of definitions and references
® Determine the size of joined segments

B Linker second pass
® Assign numeric location to symbols in new segments
® Reads and relocates the object code, substituting numeric
address for symbol references
® Adjusting memory address according new segments
® Create execution file with correct:
» Header information
> Relocated segments
» New symbol table information
> For dynamic linking linker generates “stub” code or an array of
pointers that need

AE4B330SS Lecture 9/ Page 10 2014

Object code

B Compilers and assemblers create object files from source
files

B Object files contains:

® Header information — overall information about file, like size of
the code, size of the data, name of the source file, creation date

® Object code — binary instructions and data

® Relocation — list of places in object code, that have to be fixed
up, when the linker or loader change the address of the object
code

® Symbols — global symbols defined in this object file, this symbols
can be used by other object files

® Debugging information — this information is optional, includes
information for debugger, source file line numbers and local
symbols, description of data structures

AE4B330SS Lecture 9/ Page 11 2014

Library

B Library is sequence of object modules

B UNIX files use an “archive” format of file which can be
used for collection of any types of files

B Linking library is iterative process:

® Linker reads object files in library and looks for external symbols
from program

® |f the linker finds external symbol it adds the concrete object file
to program and adds external symbols of this library object to
external symbols of program

® The previous steps repeat until new external symbols and
objects are added to program
B There can be dependencies between libraries:
® Object A from lib A needs symbol B from lib B
® Object B from lib B needs symbol C from lib A
® Object C from lib A needs symbol D from lib B
® Object D from lib B needs symbol E from

AE4B330SS Lecture 9/ Page 12 2014

UNIX ELF

B Structure for object and executable programs for most
UNIX systems

B Successor of more simple format a.out

B ELF structure is common for relocatble format (object
files), executable format (program from objects), shared
libraries and core image (core image is created if
program fails)

B ELF can be interpreted as a set of sections for linker or
set of segments for loader

B ELF contains:

® ELF header — magic string \177ELF, attributes - 32/64 bit, little-
endian/big-endian, type — relocatable/executable/shared/core
image, architecture SPARC/x86/68K,....

® Data — list of sections and segments depending on ELF type

AE4B330SS Lecture 9/ Page 13 2014

ELF relocatable

B Created by compiler and is prepared for linker to create
executable program

B Relocatable files — collection of section defined in header.
Each section is code, or read-only data, or rw data, or
relocation entries, or symbols.

B Attribute alloc means that loader must allocate space for
this section

B Sections:

.text — code with attribute alloc+exec

.data — data with initial value, alloc+write

.rodata — constants with only alloc attribute

.bss — not initialized data — nobits, alloc+write

rel.text, .rel.data, .rel.rodata — relocation information

Init — initialization code for some languages (C++)

.symtab, .dynsym — linker symbol tables (regular or dynamic)

.strtab, .dynstr — table of strings for .symtab resp. .dynsym
(.dynsym has alloc because it's used at runtime)

AE4B330SS Lecture 9/ Page 14 2014

ELF - exucutable

B Similar to ELF-relocatable but the data are arranged so
that are ready to be mapped into memory and run

B Sections are packed into segments, usually code and
read-only data into read-only segment and r/w data into
r’'w segment

B Segments are prepared to be loaded at defined address

B Usually it is:

® Stack from 0x8000000
® Text with ro-data from 0x8048000 — 0x48000 is stack size

® Data behind text
® Bss behind data

B Relocation is necessary if dynamic library is colliding with
program — Relocated is dynamic library

B Segments are not align to page size, but the offset is
used and some data are copied twice

AE4B330SS Lecture 9/ Page 15 2014

AE4B330SS

Microsoft Portable Executable format

Portable executable (PE) is Microsoft format for Win NT.
It is mix of MS-DOS executable, Digital's VAX VMS, and
Unix System V. It is adapted from COFF, Unix format
between a.out and ELF

PE is based on resources — cursors, icons, bitmaps,
menus, fonts that are shared between program and GUI

PE is for paged environment, pages from PE can be
mapped directly into memory

PE can be executable file (EXE) or shared libraries (DLL)

PE starts with small DOS.EXE program, that prints “This
program needs Microsoft Windows”

Then contains PE header, COFF header and “optional”
headers

Each section is aligned to memory page boundary

Lecture 9/ Page 16 2014

PE sections

B Each section has address in file and size, memory
address and size (not necessarily same, because disk
section use usually 512bytes, page size 4kB)

B Each section is marked with hardware permissions, read,
write, execute

B The linker creates PE file for a specific target address —
Imagebase

B |f the address space is free than loader do no relocation

B Otherwise (in few cases) the loader has to map the file
somewhere else

B Relocation is done by fix-ups from section .reloc. The PE
IS moved as block, each pointer is shifted by fixed offset
(target address — image address). The fix-up contains
position of pointer inside page and type of the pointer.

B Other sections — Exports (mainly for DLL, EXE only for
debugging), Imports (DLL that PE needs), Resources (list
gf re)sources), Thread Local Storage (Thread startup

ata

AE4B330SS Lecture 9/ Page 17 2014

Shared libraries - static

M |t is efficient to share libraries instead linking the same
library to each program

B For example, probably each program uses function printf
and if you have thousands of programs in computer there
will be thousands of copy printf function.

B The linker search library as usual to find modules that
resolve undefined external symbols. Rather than coping
the contents of module into output file it creates the table
of libraries and modules into executable

B When the program is started the loader finds the libraries
and map them to program address space

B Standards systems shares pages that are marked as
read-only.
B Static shared libraries must used different address.

B Assigning address space to libraries is complicated.

2014

AE4B330SS Lecture 9/Page 18

AE4B330SS

Dynamic Libraries

Dynamic Libraries can be relocated to free address
space

Dynamic Libraries are easier to update. If dynamic library
IS updated to new version the program has no change

It is easy to share dynamic libraries

Dynamic linking permits a program to load and unload
routines at runtime, a facility that can otherwise be very
difficult to provide

Routine can be loaded when it is called

Better memory-space utilization; unused routine is never
loaded

Useful when large amounts of code are needed to handle
iInfrequently occurring cases

Lecture 9/ Page 19 2014

ELF dynamic libraries

B ELF dynamic libraries can be loaded at any address, it
uses position independent code (PIC)
B Global offset table (GOT) contains pointer to all static

data referenced in program
B [azy procedure linkage with Procedure Linkage Table
(PLT)
® For each dynamic function PLT contain code that use GOT to

find address of this function
® At program load all addresses point to stub — dynamic loader

® After loading dynamic library entry in GOT is changed to real
routine address
B Dynamic loader (library Id.so) finds the library by library
name, major and minor versions numbers. The major
version number guarantee compatibility, the minor
version number should be the highest.

B Dynamic loading can be run explicitly by
dlopen(),dlsym(), ... functions

2014

AE4B330SS Lecture 9/Page 20

Dynamic Linking Libraries - DLL

B Similar to ELF dynamic libraries
B Dynamic linker is part of the windows kernel

B DLL is relocated if the address space is not free (windows
call it rebasing)

B [azy binding postpones binding until execution time

B Each function exported by DLL is identified by a numeric
ordinal and by name

B Addresses of functions are defined in Export Address
table

AE4B330SS Lecture 9/ Page 21 2014

Architectural Issues

B |Linkers and loaders are extremely sensitive to the
architectural details of CPU and OS

B Mainly two aspects of HW architecture affect linkers

Program addressing
Instruction format

B Position independent code — enable to implement
dynamic libraries

AE4B330SS

Separate code from data and generate code, that won’t change
regardless of the address at which it is loaded

ELF — PIC group of code pages followed by group of data pages

Regardless of where the in the address space the program is
loaded, the offset from the code to the data doesn’t change

Linker creates Global Offset Table containing pointers to all of
the global data

Advantage — no load relocation, share memory pages of code
aandong processes even though they don’t have the same
address

Disadvantage — code is bigger and slower than non-PIC

Lecture 9/ Page 22

2014

End of Lecture 8

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Rámcová činnost překladače (pokr.)
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23

