Lecture 9: Storage Management
File System Management

QIBBDIIGIBBDIISIBBI DI IB B I

Contents

B Non-volatile memory

Tape, HDD, SSD

Files & File System Interface
Directories & their Organization
File System Implementation

Disk Space Allocation

File System Efficiency & Reliability

AE4B330SS Lecture 9/ Page 2 2011

Non-volatile memory

B Non-volatile memory can get back stored information even
when not powered.

B Non-volatile memory is typically used for the task of
secondary storage, or long-term persistent storage.

B Examples of non-volatile memory from history:
® paper tape and punched cards.
® read-only memory, flash memory, ferroelectric RAM (F-RAM)

® magnetic computer storage devices (e.g. hard disks, floppy disks,
and magnetic tape)

® optical discs (CD, DVD, BlueRay)

AE4B330SS Lecture 9/ Page 3 2011

Magnetic tape data storage

B First used in 1951 to record data from UNIVAC |

B Development from 10.5 inch open reel to small closed
cartridge

B Natural sequential reading and writing
B Suitable for backup of data

B Tape has the benefit of a comparatively long duration of
the data stored on the media

B Capacity S|m|ar to HDD (5TB n 2011)

L "f ‘«ﬁz"w-'ﬂ;"' N

-

Compatibie (o
nnnnnnnnnnnn

| a BB W ; e 3
T n‘-mmzﬂa.-i_s;s

AE4B330SS Lecture 9/ Page 4 2011

Hard Disk Drive

B History development from 8, to 3.5” and 2.5, to minimal 0.85” Toshiba
in 2004 4GB and 8GB versions

B The head or heads on arm store information on magnetic medium on
Platters

Spindle

Platters

Actuator Arm

Actuator Axis

Actuator

SATA
connector
Jumper

AE4B330SS Lecture 9/ Page 5 2011

Hard Disk Drive

B Reading and writing time is similar
B [atency depends on:

® Seek time — move arm to correct cylinder (2-10 ms)

® Rotational latency — wait for correct head position on platter,
depends on rotation speed (4.200 RPM - avg. 7.14ms, 7.200RPM
—avg. 4.17ms, 15.000RPM - avg. 2ms)

® Transfer time — time for reading the data from disk (0.2ms)

B Random reading 100KB/sec — need to make seek, wait for
correct rotation and read data

B Random sector on the same cylinder — 200KB/sec — need
only rotational latency and read time

B Next sector on the same cylinder — 4MB/sec — new disks
600MB/sec

AE4B330SS Lecture 9/ Page 6 2011

Solid-State Drive

B SSD has no moving mechanical components
B More resistant to physical shock, run silently

B Most SSD’s use NAND-based flash memory, which retains
data without power

B From construction side it is RAM - random access memory
B No difference for sequential vs. random reading

B Big difference between reading and writing

B Reading 200 psec

B Write can be only on erased pages and erasing need
aprox .1.5ms

M |f SSD has free already erased page the write takes only
200 psec. Otherwise, the write costs 1.7ms

AE4B330SS Lecture 9/ Page 7 2011

Solid-State Drive

B Erase use “high” voltage - limited life time

M The cell can be erased 1k-100k times, depending on
structure, SLC, MLC, TLC

B The firmware is responsible for uniform using of cells

B TRIM command - the OS can say to SSD, that this page is
not used

B The firmware is the most important part of SSD

B The firmware makes
® Mapping of linear space to SSD memory
® Uniform usage of cells
® Keep erased pages for fast writing

AE4B330SS Lecture 9/ Page 8 2011

File Systems Interface

B Concept of the file
® Contiguous logical address space
® Types:
» Data — numeric, character, binary
> Program

B File Structure

® None - sequence of words, bytes
® Simple record structure — lines, fixed length records, variable length records
® Complex Structures
» Formatted documents, relocatable load files
® Complex Structures can be simulated
> by simple record structures through inserting appropriate control characters
» by having special control blocks in the file (e.g., section table at the file beginning)

AE4B330SS Lecture 9/ Page 9 2011

File Systems Interface (2)

B File Attributes

Name — the only information kept in human-readable form
Identifier — unique tag (number) identifies file within file system
Type — needed for systems that support different types
Location — information on file location on a device

Size — current file size

Protection — for control who can do reading, writing, executing

Time, date, and user identification — data for protection, security, and usage
monitoring

Information about files is kept in the file-system structures, which are stored and
maintained on the disk

B File Operations — exported by the OS API (cf. e.g., POSIX)

AE4B330SS

Open(F) — search the directory structure on disk for entry F, and move the

content of entry to memory

Write, Read, Reposition within file

Close(F) — move the content of entry F.in memory to directory structure on disk
Delete, Truncate

etc.

Lecture 9/ Page 10 2011

Directory Structure

B Directory is a collection of nodes containing information about files

® Both the directory .
structure and the files Directory
reside on disk

Files
B A Typical File-system Organization

[directory | | (| directory
artition A < : |
files
L > disk 1
directory partition C < :
files

fpartition B <« e

. ey

AE4B330SS Lecture 9/ Page 11 2011

Logical Organization the Directories

B Operations Performed on Directory
® Search for a file
® Create afile
® Delete afile
® List a directory
® Rename afile
® Traverse the file system

B Organize directories to get
® Efficiency — locating a file quickly
> The same file can have several different names
® Naming - convenient to users
> Two users can have same name for different files
® Grouping)— logical grouping of files by properties, (e.g., all Java programs, all
games, ...

AE4B330SS Lecture 9/ Page 12 2011

Single-Level Directory

B A single directory for all users

directory cat' bol l testl datal mafll con' hex recor

nbbbbbbb b

B Easy but
® Naming problem
® Grouping problem
® Sharing problem

AE4B330SS Lecture 9/ Page 13 2011

Two-Level Directory
B Separate directory for each user

master file
directory

user 1| user 2

user 3

user 4

o

user file

directory cat bo a test

a data

a

test X data

B Path name

bobobo 0600

B Can have the same file name for different user

B Efficient searching
B No grouping capability

AE4B330SS

Lecture 9/ Page 14

2011

AE4B330SS

Tree-Structured Directories

root

spell

bin

pmgrams

stat | mail dist

find

rearder

mail

0 \béééé/

copy

S

reorder| list

firnd

count

N0 8466 [

list spell

all

last

first

566666

B Efficient searching
B Grouping Capability
B Current directory (working directory)

® cd /spell/mail/prog
® type list

Lecture 9/ Page 15

2011

Acyclic-Graph Directories

B Have shared subdirectories and files

® aliasing — an object can have /home:

joe

jeff

different names
B Problem:

® When ‘joe’ deletes file prg.c | mail

test

‘loetst’ points wrong

‘test’, the directory item 6
® Solution:

» Each object has a counter inbox

sent

containing a count of
references.

The counter increments when a new reference is created and

decrements when a reference is deleted.
The object is erased when the counter drops to zero

AE4B330SS Lecture 9/ Page 16

S

mail

joetst

text

2011

File System Mounting

B A file system must be mounted before it can be accessed
® E.g,, file system on a removable media must be ‘announced’ to the OS, i.e. must be
mounted

® Have prepared a mount point — a directory
> Anything referenced from the mount-point before mounting will be hidden after mounting

AE4B330SS Lecture 9/ Page 17 2011

File Sharing

B Sharing of files on multi-user systems is desirable
B Sharing may be done through a protection scheme

B On distributed systems, files may be shared across a network
® Network File System (NFS) is a common distributed file-sharing method
B User IDs identify users, allowing permissions and protections to be
per-user

B Group IDs allow users to be in groups, permitting group access rights

® POSIX rwx | rwx | rwx scheme
u G O

® ACL - Access Control Lists (Windows, some UNIXes)

AE4B330SS Lecture 9/ Page 18 2011

File System Implementation Obj

B |mplementation possibilities of local file
systems and directory structures

B File block allocation and free-block strategies,
algorithms and trade-offs

B File structure
® Logical storage unit
® (Collection of related information

B File system resides on secondary storage
(disks)
B File system is organized into layers

B File control block — storage structure
consisting of information about a file
® Size, ownership, allocation info, time stamps, ...

AE4B330SS Lecture 9/ Page 19

ectives

application programs

ﬂ

logical file system

y

file-organization module

!

basic file system

!

|/O control

!

devices

2011

In-Memory File System Structures

B The following figure illustrates the necessary file system structures
provided by the operating systems.

F

5

]
L]

directo ry structure

LI

[
T

directory structure

fi

e-control block

kernel memory

(@)

secondary storage

index

per-process system-wide
open-file table open-file table

L[]
]

0

data blocks

-

file-control block

opening a file _
open (file name)
user space
reading a file
read (index)
user space
AE4B330SS

kernel memory

(b)

Lecture 9/ Page 20

secondary storage

2011

Virtual File Systems

B Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

B VFS allows the same system call interface (the API) to be used for
different types of file systems.

B The APl is to the VFS interface, rather than any specific type of file
system.

file-system interface

VFES interface

local file system local file system remote file system
type 1 type 2 type 1

L 4 s 4 |
2
network

AE4B330SS Lecture 9/ Page 21 2011

Directory Implementation

B Linear list of file names with pointer to the data blocks.
® simple to program
® time-consuming to execute
B Hash Table - linear list with hash data structure.
® decreases directory search time
® collisions - situations where two file names hash to the same location
® fixed size

B Complex data structure —e.g., B+ tree
® NTFS in MS Windows

AE4B330SS Lecture 9/ Page 22 2011

Allocation Methods for Files

B An allocation method refers to how disk blocks are allocated for files:
® Contiguous allocation
® Linked allocation
® [ndexed allocation

directory
B Contiguous allocation count e start lengh
— simple to implement e T I R G
® Each file occupies a set of 4[| 5[1 e mail 19 6
contiguous blocks on the disk ist 28 4
® Simple — only starting location ‘u QEHODITD f 6 2
(block #) and length (number 1211311411507
of blocks) are required
® Random access 16017 118 118l
® Wasteful of space (dynamic o024 oo 23]
storage-allocation problem)
® Files cannot grow it
28[29[130[131[]

AE4B330SS Lecture 9/ Page 23 2011

Extent-Based Systems

B Many newer file systems (e.g., Veritas File System) use a modified
contiguous allocation scheme

B Extent-based file systems allocate disk blocks in extents

B An extent is a contiguous block of disks
® Extents are allocated for file growth
® A file consists of one or more extents

AE4B330SS Lecture 9/ Page 24 2011

Linked Allocation

B Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

B Simple — need only starting address

B Free-space management system
— no waste of space

M Difficult random access — —
® must go through the C—— rectory
whole chain fle start end

jeep 9 25

block = |pointer to next block

+0J 53 61 700
8] prjto[2111]
12[J13[114[115
16 [17[_118[]19[]
2052125235
24[J25[126[127[]
28[29[130131
-

AE4B330SS Lecture 9/ Page 25 2011

Linked Allocation with FAT

B Allocation chains stored separately

B File-allocation table (FAT)
® Disk-space allocation used by MS-DOS and OS/2.

M Problems:
® Size of the table
® Access speed
® Reliability

4 AII file info is concentrated
in one place

» FAT duplicates

start block

no. of disk blocks -1

AE4B330SS Lecture 9/ Page 26 2011

B Allocation block, cluster
® group of adjacent disk sectors

Allocation block size with FAT

B Fixed size of FAT on disk
M Different FAT types

FAT-16

® FAT item has 12, 16 or 32 bits
® Directory entry (MSDOS):

8 bytes

3

1

10

4 2 4

Name

Extension

Attrs

Reserved

Date and time | 1t block File size

B Addressing capability of different FAT types

Block size FAT-12 FAT-16 FAT-32

0.5 KB =1 sector 2 MB

1 KB = 2 sectors 4 MB 2

2 KB =4 sectors 8 MB 128 MB

4 KB = 8 sectors 16 MB 256 MB 1TB
8 KB = 16 sectors 512 MB 27TB
16 KB = 32 sectors b) 1GB 2TB
32 KB = 64 sectors 2 GB 27TB

AE4B330SS

Lecture 9/ Page 27

Empty entries in the table are unused

because:

a) FAT is too large compared to the
disk capacity

b) losses due to internal fragmentation
are to high

2011

Indexed Allocation

B Brings all pointers for one file together into an index block.
B [ogical view

directory

file index block
jeep 19

ol 1 1M 2[| a[|
4[] 5[] 701

index table

B Need index table
B Random access

B Dynamic access without
external fragmentation, but
have overhead of index
block.

® Mapping from logical to physical in a file of maximum size of 256K words and block
size of 512 words. We need only 1 block for index table

® Only “small” files

24125126 127[]
28129130 131[]

AE4B330SS Lecture 9/ Page 28 2011

Combined Scheme: UNIX FS

B Disk i-node
® 4K bytes per block
mode
owners (2)

timestamps (3)

—> data

size block count

—» data

—» data

direct blocks = o

—» data

s> data —
single indirect —{ . > data
= —»{ data = e
double indirect >E | —4——»| data
triple indirect - »] » data
| 2=— data

AE4B330SS Lecture 9/ Page 29 2011

NTFS

B Database structure

M File has attributes — name, time modification, data stream
B Everything is file

B Master File Table contain information about all files

B Master File Table is file too.

B MFT contains information about itself

B Resident attributes are stored in MFT

B Non-resident are on disk according allocation map

M |f the file is too much fragmented and the allocation map
cannot be in MFT so allocation map becomes non-resident
and is moved on disk and mapped by another allocation
map

AE4B330SS Lecture 9/ Page 30 2011

NTFS vs. FAT

B NTFS is for large disk >500MB

B FAT has less memory overhead

B FAT is more simple and operation are more effective
B NTFS has save file descriptor

B NTFS has transaction recovery

B NTFS has B+tree for directory structure — fast for big
directories

AE4B330SS Lecture 9/ Page 31 2011

B Bit vector (n blocks) — one bit per block
® Bit map requires extra space
® Easy to get contiguous files

Free-Space Management

B Linked list (free list)

B Need to protect:

AE4B330SS

® Pointer to free list

® Bit map
> Must be kept on disk
> Copy in memory and disk may differ
» Cannot allow for block[/] to have a

® Cannot get contiguous space easily
® No waste of space

situation where bit[/] = 1 in memory

and bit[/] = 0 on disk

® Solution:
» Set bit[i] = 1 in disk
> Allocate block[i]
» Set bit[i] = 1 in memory

Lecture 9/ Page 32

01 2 n-1
. 0 = block]/] free
blt[l] =0H .
1 = block][/] occupied
/_\
v

free-space list head

24]25[26|27

28[29[J30[131]

Directory Implementation

B Linear list of file names with pointer to the data blocks
® simple to implement
® time-consuming to execute
® directory can grow and shrink

B Hash Table - linear list with hash data structure
® decreases directory search time
® collisions - situations where two file names hash to the same location
® fixed size

AE4B330SS Lecture 9/ Page 33 2011

File System Efficiency and Performance

B Efficiency dependent on:
® disk allocation and directory algorithms
® types of data kept in file’s directory entry

B Performance
® disk cache — separate section of main memory for frequently used blocks
® free-behind and read-ahead — techniques to optimize sequential access

® improve PC performance by dedicating section of memory as virtual disk, or
RAM disk

AE4B330SS Lecture 9/ Page 34 2011

Recovery from a Crash

B Consistency checking — compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

B Use system programs to back up data from disk to another storage
device (floppy disk, magnetic tape, other magnetic disk, optical)

B Recover lost file or disk by restoring data from backup

AE4B330SS Lecture 9/ Page 35 2011

Log Structured File Systems

B Log structured (or journaling) file systems record each update to the
file system as a transaction
® similar to database systems

M All transactions are written to a log
® Atransaction is considered committed once it is written to the log
® However, the file system may not yet be updated

B The transactions in the log are asynchronously written to the file
system
® When the file system is modified, the transaction is removed from the log

W |f the file system crashes, all remaining transactions in the log must
still be performed

B Used by NTFS file system
B Can be used by ext3,4 Linux file systems
B Used by HFS+ by Mac OS

AE4B330SS Lecture 9/ Page 36 2011

End of Lecture 9

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37

