Lecture 9: Storage Management
File System Management
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Non-volatile memory

B Non-volatile memory can get back stored information even
when not powered.

B Non-volatile memory is typically used for the task of
secondary storage, or long-term persistent storage.

B Examples of non-volatile memory from history:
® paper tape and punched cards.
® read-only memory, flash memory, ferroelectric RAM (F-RAM)

® magnetic computer storage devices (e.g. hard disks, floppy disks,
and magnetic tape)

® optical discs (CD, DVD, BlueRay)

AE4B330SS Lecture 9/ Page 3 2011



Magnetic tape data storage

B First used in 1951 to record data from UNIVAC |

B Development from 10.5 inch open reel to small closed
cartridge

B Natural sequential reading and writing
B Suitable for backup of data

B Tape has the benefit of a comparatively long duration of
the data stored on the media

B Capacity S|m|ar to HDD (5TB n 2011)
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Hard Disk Drive

B History development from 8, to 3.5” and 2.5, to minimal 0.85” Toshiba
in 2004 4GB and 8GB versions

B The head or heads on arm store information on magnetic medium on
Platters

Spindle

Platters

Actuator Arm

Actuator Axis

Actuator

SATA
connector
Jumper
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Hard Disk Drive

B Reading and writing time is similar
B [ atency depends on:

® Seek time — move arm to correct cylinder (2-10 ms)

® Rotational latency — wait for correct head position on platter,
depends on rotation speed (4.200 RPM - avg. 7.14ms, 7.200RPM
—avg. 4.17ms, 15.000RPM - avg. 2ms)

® Transfer time — time for reading the data from disk (0.2ms)

B Random reading 100KB/sec — need to make seek, wait for
correct rotation and read data

B Random sector on the same cylinder — 200KB/sec — need
only rotational latency and read time

B Next sector on the same cylinder — 4MB/sec — new disks
600MB/sec
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Solid-State Drive

B SSD has no moving mechanical components
B More resistant to physical shock, run silently

B Most SSD’s use NAND-based flash memory, which retains
data without power

B From construction side it is RAM - random access memory
B No difference for sequential vs. random reading

B Big difference between reading and writing

B Reading 200 psec

B Write can be only on erased pages and erasing need
aprox .1.5ms

M |f SSD has free already erased page the write takes only
200 psec. Otherwise, the write costs 1.7ms
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Solid-State Drive

B Erase use “high” voltage - limited life time

M The cell can be erased 1k-100k times, depending on
structure, SLC, MLC, TLC

B The firmware is responsible for uniform using of cells

B TRIM command - the OS can say to SSD, that this page is
not used

B The firmware is the most important part of SSD

B The firmware makes
® Mapping of linear space to SSD memory
® Uniform usage of cells
® Keep erased pages for fast writing
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File Systems Interface

B Concept of the file
® Contiguous logical address space
® Types:
» Data — numeric, character, binary
> Program

B File Structure

® None - sequence of words, bytes
® Simple record structure — lines, fixed length records, variable length records
® Complex Structures
» Formatted documents, relocatable load files
® Complex Structures can be simulated
> by simple record structures through inserting appropriate control characters
» by having special control blocks in the file (e.g., section table at the file beginning)
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File Systems Interface (2)

B File Attributes

Name — the only information kept in human-readable form
Identifier — unique tag (number) identifies file within file system
Type — needed for systems that support different types
Location — information on file location on a device

Size — current file size

Protection — for control who can do reading, writing, executing

Time, date, and user identification — data for protection, security, and usage
monitoring

Information about files is kept in the file-system structures, which are stored and
maintained on the disk

B File Operations — exported by the OS API (cf. e.g., POSIX)

AE4B330SS

Open(F) — search the directory structure on disk for entry F, and move the

content of entry to memory

Write, Read, Reposition within file

Close(F) — move the content of entry F.in memory to directory structure on disk
Delete, Truncate

etc.
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Directory Structure

B Directory is a collection of nodes containing information about files

® Both the directory .
structure and the files Directory
reside on disk

Files
B A Typical File-system Organization

[ directory | | (| directory
artition A < : |
files
L > disk 1
directory partition C < :
files

fpartition B <« e

. ey
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Logical Organization the Directories

B Operations Performed on Directory
® Search for a file
® Create afile
® Delete afile
® List a directory
® Rename afile
® Traverse the file system

B Organize directories to get
® Efficiency — locating a file quickly
> The same file can have several different names
® Naming - convenient to users
> Two users can have same name for different files
® Grouping)— logical grouping of files by properties, (e.g., all Java programs, all
games, ...
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Single-Level Directory

B A single directory for all users

directory cat' bol l testl datal mafll con' hex recor

nbbbbbbb b

B Easy but
® Naming problem
® Grouping problem
® Sharing problem
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Two-Level Directory
B Separate directory for each user

master file
directory

user 1| user 2

user 3

user 4

o

user file

directory cat bo a test

a data

a

test X data

B Path name

bobobo 0600

B Can have the same file name for different user

B Efficient searching
B No grouping capability
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Tree-Structured Directories

root

spell

bin

pmgrams

stat | mail dist

find

rearder

mail

0 \béééé/

copy

S

reorder| list

firnd

count

N0 8466 [

list spell

all

last

first

566666

B Efficient searching
B Grouping Capability
B Current directory (working directory)

® cd /spell/mail/prog
® type list

Lecture 9/ Page 15

2011



Acyclic-Graph Directories

B Have shared subdirectories and files

® aliasing — an object can have /home:

joe

jeff

different names
B Problem:

® When ‘joe’ deletes file prg.c | mail

test

‘loetst’ points wrong

‘test’, the directory item 6
® Solution:

» Each object has a counter inbox

sent

containing a count of
references.

The counter increments when a new reference is created and

decrements when a reference is deleted.
The object is erased when the counter drops to zero

AE4B330SS Lecture 9/ Page 16

S

mail

joetst

text

2011




File System Mounting

B A file system must be mounted before it can be accessed
® E.g,, file system on a removable media must be ‘announced’ to the OS, i.e. must be
mounted

® Have prepared a mount point — a directory
> Anything referenced from the mount-point before mounting will be hidden after mounting
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File Sharing

B Sharing of files on multi-user systems is desirable
B Sharing may be done through a protection scheme

B On distributed systems, files may be shared across a network
® Network File System (NFS) is a common distributed file-sharing method
B User IDs identify users, allowing permissions and protections to be
per-user

B Group IDs allow users to be in groups, permitting group access rights

® POSIX rwx | rwx | rwx scheme
u G O

® ACL - Access Control Lists (Windows, some UNIXes)
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File System Implementation Obj

B |mplementation possibilities of local file
systems and directory structures

B File block allocation and free-block strategies,
algorithms and trade-offs

B File structure
® Logical storage unit
® (Collection of related information

B File system resides on secondary storage
(disks)
B File system is organized into layers

B File control block — storage structure
consisting of information about a file
® Size, ownership, allocation info, time stamps, ...
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In-Memory File System Structures

B The following figure illustrates the necessary file system structures
provided by the operating systems.

F

5

]
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directo ry structure
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[
T

directory structure

fi

e-control block

kernel memory

(@)

secondary storage

index

per-process system-wide
open-file table open-file table

L[]
]

0

data blocks

-

file-control block

opening a file _
open (file name)
user space
reading a file
read (index)
user space
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Virtual File Systems

B Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

B VFS allows the same system call interface (the API) to be used for
different types of file systems.

B The APl is to the VFS interface, rather than any specific type of file
system.

file-system interface

VFES interface

local file system local file system remote file system
type 1 type 2 type 1

L 4 s 4 |
2
network
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Directory Implementation

B Linear list of file names with pointer to the data blocks.
® simple to program
® time-consuming to execute
B Hash Table - linear list with hash data structure.
® decreases directory search time
® collisions - situations where two file names hash to the same location
® fixed size

B Complex data structure —e.g., B+ tree
® NTFS in MS Windows
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Allocation Methods for Files

B An allocation method refers to how disk blocks are allocated for files:
® Contiguous allocation
® Linked allocation
® [ndexed allocation

directory
B Contiguous allocation count e start lengh
— simple to implement e T I R G
® Each file occupies a set of 4[| 5[ 1 e mail 19 6
contiguous blocks on the disk ist 28 4
® Simple — only starting location ‘u QEHODITD f 6 2
(block #) and length (number 1211311411507
of blocks) are required
® Random access 16017 118 118l
® Wasteful of space (dynamic o024 oo 23]
storage-allocation problem)
® Files cannot grow it
28[ 29[ 130[131[]
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Extent-Based Systems

B Many newer file systems (e.g., Veritas File System) use a modified
contiguous allocation scheme

B Extent-based file systems allocate disk blocks in extents

B An extent is a contiguous block of disks
® Extents are allocated for file growth
® A file consists of one or more extents
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Linked Allocation

B Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

B Simple — need only starting address

B Free-space management system
— no waste of space

M Difficult random access — —
® must go through the C—— rectory
whole chain fle start end

jeep 9 25

block = |pointer to next block

+0J 53 61 700
8] prjto[2111]
12[J13[114[ 115
16 [17[_118[]19[ ]
2052125235
24[J25[126[127[]
28[ 29[ 130131
-
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Linked Allocation with FAT

B Allocation chains stored separately

B File-allocation table (FAT)
® Disk-space allocation used by MS-DOS and OS/2.

M Problems:
® Size of the table
® Access speed
® Reliability

4 AII file info is concentrated
in one place

» FAT duplicates

start block

no. of disk blocks -1
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B Allocation block, cluster
® group of adjacent disk sectors

Allocation block size with FAT

B Fixed size of FAT on disk
M Different FAT types

FAT-16

® FAT item has 12, 16 or 32 bits
® Directory entry (MSDOS):

8 bytes

3

1

10

4 2 4

Name

Extension

Attrs

Reserved

Date and time | 1t block File size

B Addressing capability of different FAT types

Block size FAT-12 FAT-16 FAT-32

0.5 KB =1 sector 2 MB

1 KB = 2 sectors 4 MB 2

2 KB =4 sectors 8 MB 128 MB

4 KB = 8 sectors 16 MB 256 MB 1TB
8 KB = 16 sectors 512 MB 27TB
16 KB = 32 sectors b) 1GB 2TB
32 KB = 64 sectors 2 GB 27TB

AE4B330SS
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Empty entries in the table are unused

because:

a) FAT is too large compared to the
disk capacity

b) losses due to internal fragmentation
are to high
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Indexed Allocation

B Brings all pointers for one file together into an index block.
B [ogical view

directory

file index block
jeep 19

ol 1 1M 2[ | a[ |
4[] 5[] 701

index table

B Need index table
B Random access

B Dynamic access without
external fragmentation, but
have overhead of index
block.

® Mapping from logical to physical in a file of maximum size of 256K words and block
size of 512 words. We need only 1 block for index table

® Only “small” files

24125126 127[]
28129130 131[]
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Combined Scheme: UNIX FS

B Disk i-node
® 4K bytes per block
mode
owners (2)

timestamps (3)

—> data

size block count

—» data

—» data

direct blocks = o

—» data

s> data —
single indirect —{ . > data
= —»{ data = e
double indirect >E | —4——»| data
triple indirect - » ] » data
| 2=— data
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NTFS

B Database structure

M File has attributes — name, time modification, data stream
B Everything is file

B Master File Table contain information about all files

B Master File Table is file too.

B MFT contains information about itself

B Resident attributes are stored in MFT

B Non-resident are on disk according allocation map

M |f the file is too much fragmented and the allocation map
cannot be in MFT so allocation map becomes non-resident
and is moved on disk and mapped by another allocation
map
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NTFS vs. FAT

B NTFS is for large disk >500MB

B FAT has less memory overhead

B FAT is more simple and operation are more effective
B NTFS has save file descriptor

B NTFS has transaction recovery

B NTFS has B+tree for directory structure — fast for big
directories
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B Bit vector (n blocks) — one bit per block
® Bit map requires extra space
® Easy to get contiguous files

Free-Space Management

B Linked list (free list)

B Need to protect:

AE4B330SS

® Pointer to free list

® Bit map
> Must be kept on disk
> Copy in memory and disk may differ
» Cannot allow for block[/] to have a

® Cannot get contiguous space easily
® No waste of space

situation where bit[/] = 1 in memory

and bit[/] = 0 on disk

® Solution:
» Set bit[i] = 1 in disk
> Allocate block[i]
» Set bit[i] = 1 in memory
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Directory Implementation

B Linear list of file names with pointer to the data blocks
® simple to implement
® time-consuming to execute
® directory can grow and shrink

B Hash Table - linear list with hash data structure
® decreases directory search time
® collisions - situations where two file names hash to the same location
® fixed size
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File System Efficiency and Performance

B Efficiency dependent on:
® disk allocation and directory algorithms
® types of data kept in file’s directory entry

B Performance
® disk cache — separate section of main memory for frequently used blocks
® free-behind and read-ahead — techniques to optimize sequential access

® improve PC performance by dedicating section of memory as virtual disk, or
RAM disk
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Recovery from a Crash

B Consistency checking — compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

B Use system programs to back up data from disk to another storage
device (floppy disk, magnetic tape, other magnetic disk, optical)

B Recover lost file or disk by restoring data from backup
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Log Structured File Systems

B Log structured (or journaling) file systems record each update to the
file system as a transaction
® similar to database systems

M All transactions are written to a log
® Atransaction is considered committed once it is written to the log
® However, the file system may not yet be updated

B The transactions in the log are asynchronously written to the file
system
® When the file system is modified, the transaction is removed from the log

W |f the file system crashes, all remaining transactions in the log must
still be performed

B Used by NTFS file system
B Can be used by ext3,4 Linux file systems
B Used by HFS+ by Mac OS
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End of Lecture 9

Questions?
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