Lesson 7 Memory management

Content
Memory management - history

Segmentation
Paging and implementation

Page table

A A i

Segmentation with paging

AE4B330SS Lecture 7 / Page 1 2011

Why memory?

* CPU can perform only instruction that is stored in internal memory and all
it's data are stored in internal memory too
* Memory architecture:
— Harvard architecture — different memory for program and for data,
— von Neumann - the same memory for both program and data
* Physical address space — physical address is address in internal computer
memory
— Size of physical address depends on CPU, on size of address bus
— Real physical memory is often smaller then the size of the address space
* Depends on how much money you can spend for memory.
* Logical address space — generated by CPU, also referred as virtual

address space. It is stored in memory, on hard disk or doesn't exist if it
was not used.

— Size of the logical address space depends on CPU but not on address bus

AE4B330SS Lecture 7 / Page 2 2011

How to use memory

* Running program has to be places into memory

* Program is transformed to structure that can be implemented by CPU by
different steps

- O|S d%cides where the program will be and where the data for the program will be
place

— Goal: Bind address of instructions and data to real address in address space
* Internal memory stores data and programs that are running or waiting
— Long term memory is implemented by secondary memory (hard drive)

* Memory management is part of OS
— Application has no access to control memory management
* Privilege action
— Itis not safe to enable application to change memory management
* It is not effective nor safe

AE4B330SS Lecture 7 / Page 3 2011

History of memory management

First computer has no memory management — direct access to
memory

Advantage of system without memory management
— Fast access to memory
— Simple implementation
— Can run without operating system

Disadvantage

— Cannot control access to memory

— Strong connection to CPU architecture
— Limited by CPU architecture

* Usage

— First computer

— 8 bits computers (CPU Intel 8080, Z80, ...) - 8 bits data bus, 16 bits
address bus, maximum 64 kB of memory

— Control computers — embedded (only simple control computers)

AE4B330SS Lecture 7 / Page 4 2011

First memory management - Overlays

* First solution, how to use more
memory than the physical
address space allows

— Special instruction to switch part
of the memory to access by Common
address bus part

* Overlays are defined by user
and implemented by compiler

— Minimal support from OS

— It is not simple to divid data or
program to overlays

2011

AE4B330SS Lecture 7 / Page 5

Virtual memory

 Demand for bigger protected memory that is managed by
somebody else (OS)

* Solution is virtual memory that is somehow mapped into real
physical memory

* 1959-1962 first computer Atlas Computer from Manchesteru
with virtual memory (size of the memory was 576 kB)
implemented by paging

* 1961 - Burroughs creates computer B5000 that uses segment
for virtual memory

* |Intel
— 1978 processor 8086 — first PC — simple segments
— 1982 processor 80286 — protected mode — real segmentation

— 1985 processor 80386 - full virtual memory with segmentation and
paging

AE4B330SS Lecture 7 / Page 6 2011

Simple segemnts — Intel 8086

* Processor 8086 has 16 bits of data bus and 20 bits of address
bus. 20 bits is problem. How to get 20 bits numbers?

* Solution is “simple” segments

* Address is composed with 16 bits address of segment and 16-
bits address of offset inside of the segment.

* Physical address is computed as:
(segment<<4)+offset

* ltis not real virtual memory, only system how to use bigger
memory
* Two types of address

— near pointer — contains only address inside of the segment, segment is
defined by CPU register

— far pointer — pointer between segments, contains segment description
and offset

AE4B330SS Lecture 7 / Page 7 2011

Segmentation — protected mode Inte] 80286

* Support for user definition of logical
address space
— Program is set of segments

— Each segment has it’s own meaning:
main program, function, data, library,
variable, arrayj, ...

* Basic goal — how to transform address .

Subroutine

Working
array

(segment, offset) to physical address

* Segment table — ST

— Function from 2-D (segment, offset) into 1-D (address)

— One item in segment table:
* base — location of segment in physical memory, limit — length of segment

— Segment-table base register (STBR) — where is ST in memory
— Segment-table length register (STLR) — ST size

AE4B330SS Lecture 7 / Page 8 2011

Hardware SU];)];)O]_T for segmentation
Segment table

A
'S

IS i base mE

base

0)

V.
| < + @_r

\%
Segmentation fault

Memory

AE4B330SS Lecture 7 / Page 9 2011

Segmentation

* Advantage of the segmentation
— Segment has defined length

— It is possible to detect access outside of the segment. It throws new
type of error — segmentation fault

— It is possible to set access for segment
* OS has more privilege than user
* User cannot affect OS

— It is possible to move data in memory and user cannot detect this shift
~ (change of the segment base is for user invisible)
* Disadvantage of segmentation

— How to rglace segments into main memory. Segments have different
length. Programs are move into memory and release memory.

— Overhead to compute physical address from virtual address (one
comparison, one addition

AE4B330SS Lecture 7 / Page 10 2011

Segmentation example

Subroutine Seg 0

Stack

S”Zf”ﬁ”e i ‘ limit base
’ Stack Seg 3
— 0| 1000 1400
Sat aty 1400 6300
Seg 4 2 00 4300 Main program
seg! 31100 3200 seg?
Main 41000 4700 Working array
program Seg 4
Seg 2
* It is not easy to place the segment into S SRyl

memory
— Segments has different size
— Memory fragmentation
— Segemnt moving has big overhead (is not used)

AE4B330SS Lecture 7 / Page 11 2011

Paging

Different solution for virtual memory implementation

Paging remove the basic problem of segments — different size

All pages has the same size that is defined by CPU architecture

Fragmentation is only inside of the page (small overhead)

AE4B330SS Lecture 7 / Page 12 2011

Paging

* Contiguous logical address space can be mapped to
noncontiguous physical location
— Each page has its own position in physical memory
* Divide physical memory into fixed-sized blocks called frames
— The size is power of 2 between 512 and 8 192 B
* Dived logical memory into blocks with the same size as frames.
These blocks are called pages
* OS keep track of all frames

* To run process of size n pages need to find n free frames,
Tranformation from logical address — physical address by
— PT = Page Table

AE4B330SS Lecture 7 / Page 13 2011

Address Translation Scheme

* Address generated by CPU is divided into:

— Page number (p) — used as an index into a page table which
contains base address of each page in physical memory

— Page offset (d) — combined with base address to define the physical
memory address that is sent to the memory unit

4

logical physical -
address address | fO000 ... 0000
h 4
CPU —> p d f d >
A

il fo ql

p{

physical
memory

page table
AE4B330SS Lecture 7 / Page 14 2011

Paging Examples

AE4B330SS Lecture 7 / Page 15 2011

AEA4B330SS

Implementation of Page Table

Paging is implemented in hardware
Page table is kept in main memory
Page-table base register (PTBR) points to the page table

tIZl% ! -table length register (PTLR) indicates size of the page

In this scheme every data/instruction access requires two
memory accesses. ‘One for the page table and one for the
data/instruction.

The two memory access problem can be solved by the use of
a special fast-lookup hardware cache called assocCiative
memory or translation look-aside buffers (TLBS)

Lecture 7 / Page 16 2011

Associative Memory

* Associative memory — parallel search — content-addressable memory
* \Very fast search Bl

Input address Output address

100000 ABC000
100001 201000
300123 ABCO001
100002 300300

» Address translation (A", A”)

— If A" is in associative register, get Frame
— Otherwise the TBL has no effect, CPU need to look into page table

 Small TBL can make big improvement
— Usually program need only small number of pages in limited time

AE4B330SS Lecture 7 / Page 17 2011

Paging Hardware With TLB

AE4B330SS Lecture 7 / Page 18 2011

* Effective Access Time with TLB
— Associative Lookup = € time unit
— Assume memory cycle time is t = 100 nanosecond

— Hit ratio — percentage of times that a page number is found in the associative
registers; ration related to number of associative registers, Hit ratio = o

— Effective Access Time (EAT)
EAT=(t+e)a+(2t+e)(1-a)=(2-a)t +¢
Example for t=100 ns

Paging Properties

PT without TLB EAT = 200 ns | Need two access to memory
€=20ns a =60 % EAT = 160 ns
£ =20 ns a =80 % EAT = 140 ns g}nlz increase significantly access
€=20ns a =98 % EAT =122 ns

AEA4B330SS

Lecture 7 / Page 19

2011

TLB

* Typical TLB
— Size 8-4096 entries
— Hit time 0.5-1 clock cycle

— PT access time 10-100 clock cycles
— Hit ration 99%-99.99%

* Problem with context switch
— Another process needs another pages
— With context switch invalidates TBL entries (free TLB)

* (S takes care about TLB

— Remove old entries
— Add new entries

AE4B330SS Lecture 7 / Page 20 2011

Page table structure

Problem with PT size

— Each process can have it's own PT

— 32-bits logical address with page size 4 KB — PT has 4 MB
= PT must be in memory

* Hierarchical PT

— Translation is used by PT hierarchy

— Usually 32-bits logical address has 2 level PT

— PT contains reference to PT'

— ,Real page table PT' can be paged need not to be in memory

Hash PT

— Address p is used by hash function hash(p)

* Inverted PT

— One PT for all process

— Items depend on physical memory size

— Hash function has address p and process pid hash(pid, p)

AE4B330SS Lecture 7 / Page 21 2011

AEA4B330SS

Hierarchical Page Tables

* Break up the logical address space into multiple page tables

* A simple technique is a two-level page table
— A logical address (on 32-bit machine with 4K page size) is divided

Into:

* apage number consisting of 20 bits

* apage offset consisting of 12 bits
— Since the page table is paged, the page number is further divided

into:
* a 10-bit page number
* a 10-bit page offset

— Thus, a logical address is as follows:

10b

10b

12b

PT°

PT?

offset

Lecture 7 / Page 22

2011

Two-Level Page-Table Scheme

AE4B330SS Lecture 7 / Page 23 2011

PAE

* Price of 8GB RAM is low but you cannot use this memory with
32-bit system. Solution 64-bit system or PAE

* Physical Address Extension = PAE

* Using PAE you change 32-bit address space to 36-bit address
space, it can address 64 GB RAM
* Change of page table:
— Page table translate 20bits of page number to 24bits of frame number

— Page table size is increased twice, because there was no space for
additional 4 bits

— Maximal linear size for one process is still 4GB
— 2 processes can use 8GB

— MS Windows change 2level page table into 3 level to keep smaller
size of PT

PAE is overhead for the OS but it enables to use more memory

AE4B330SS Lecture 7 / Page 24 2011

Hierarchical PT

64-bits address space with page size 8 KB
— 51 bits page number — 2 Peta (2048 Tera) Byte PT

It is problem for hierarchical PT too:
— Each level brings new delay and overhead, 7 levels will be very slow

UltraSparc — 64 bits ~ 7 level — wrong

Linux — 64 bits (Windows similar)

— Trick: logical address uses only 43 bits, other bits are ignored
— Logical address space has only 8 TB

— 3 level by 10 bits of address

— 13 bits offset inside page

— Itis useful solution

AE4B330SS Lecture 7 / Page 25 2011

* The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same location.

* Virtual page numbers are compared in this chain searching for a
match. If a match is found, the corresponding physical frame is

extracted.

AEA4B330SS

Hashed Page Tables

* Common in address spaces > 32 bits

mogmaladdress |

physical

P

d

Y

@ -—>|q|8|’T|_T|p|r|

hash table

¢ address

[
L

d

Lecture 7 / Page 26

N

physical
memory

2011

Inverted Page Table

* One entry for each real page of memory

* Entry consists of the virtual address of the page stored in that
real memory location, with information about the process that
owns that page

* Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

* Use hash table to limit
the search to one —
or at most a few —
page-table entries ogical ysica

address | ‘L address ohysical
CPU —pid| p | d | |J\|d| > memory

}i

search l

=l
g
—

page table

AE4B330SS Lecture 7 / Page 27 2011

Shared Pages

* Shared code

— One copy of read-only
(reentrant) code shared among
processes (i.e., text editors,
compilers, window systems).

— Shared code must appear in
same location in the logical
address space of all processes

* Private code and data

— Each process keeps a separate
copy of the code and data

— The pages for the private code
and data can appear anywhere
in the logical address space

AE4B330SS Lecture 7 / Page 28

2011

Segmentation with paging

e Combination of both methods

* Keeps advantages of segmentation, mainly precise limitation of
memory space

* Simplifies placing of segments into virtual memory. Memory
fragmentation is limited to page size.

* Segmentation table ST can contain
— address of page table for this segment PT
— Or linear address this address is used as virtual address for paging

AE4B330SS Lecture 7 / Page 29 2011

Segmentation with paging

* Segmentation with paging is supported by architecture 1A-32
(e.g. INTEL-Pentium)

* |A-32 transformation from logical address space to physical

address space with different modes:

— logical linear space (4 GB), transformation identity
* Used only by drivers and OS
— logical linear space (4 GB), paging,
* 1024 oblasti a 4 MB, délka stranky 4 KB, 1024 tabulek stranek, kazda tabulka
stranek ma 1024 radku
* Pouzivaji implementace UNIX na INTEL-Pentium
— logical 2D address (segemnt, offset), segmentation
« 2"=16384 of segments each 4 GB ~ 64 TB
— logical 2D address (segemnt, offset), segmentatation with paging
* Segments select part of linear space, this linear space uses paging
* Used by windows and linux

AE4B330SS Lecture 7 / Page 30 2011

Segmentation with paging |A-32
16 K of segments with maximal size 4 GB for each segment

* 2 logic subspaces (descriptor TI=0/1)
— 8 K private segments — Local Description Table, LDT
— 8 K shared segments — Global Description Table, GDT

* Logic addres = (segment descriptor, offset)
— offset = 32-bits address with paging

— Segment descriptor
* 13 bits segemnt number,
* 1 bit descriptorT|,
* 2 bits Privilege levels : OS kernel, ... ,application
* Rights for r'w/e at page level

* Linear address space inside segemnt with hierchical page table
with 2 levels
— Page size 4 KB, offset inside page 12 bits,
— Page number 2x10 bits

AE4B330SS Lecture 7 / Page 31 2011

AEA4B330SS

Segmentation with Paging — Intel 386

* |A32 architecture uses segmentation with paging for memory
management with a two-level paging scheme

logical address

selector

offset

| descriptor table
segment descriptor

.®.

linear address

directory page

offset

page directory

page frame

page table

p physical address

—

directory entry

— —® page table entry

page directory
base register

|

]

Lecture 7 / Page 32

2011

Linux on Intel 80x86

* Uses minimal segmentation to keep memory management
implementation more portable

* Uses 6 segments:
— Kernel code
— Kernel data
— User code (shared by all user processes, using logical addresses)
— User data (likewise shared)
— Task-state (per-process hardware context)
— LDT

* Uses 2 protection levels:
— Kernel mode
— User mode

AE4B330SS Lecture 7 / Page 33 2011

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33

