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Why memory?

* CPU can perform only instruction that is stored in internal memory and all
it's data are stored in internal memory too
* Memory architecture:
— Harvard architecture — different memory for program and for data,
— von Neumann - the same memory for both program and data
* Physical address space — physical address is address in internal computer
memory
— Size of physical address depends on CPU, on size of address bus
— Real physical memory is often smaller then the size of the address space
* Depends on how much money you can spend for memory.
* Logical address space — generated by CPU, also referred as virtual

address space. It is stored in memory, on hard disk or doesn't exist if it
was not used.

— Size of the logical address space depends on CPU but not on address bus
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How to use memory

* Running program has to be places into memory

* Program is transformed to structure that can be implemented by CPU by
different steps

- O|S d%cides where the program will be and where the data for the program will be
place

— Goal: Bind address of instructions and data to real address in address space
* Internal memory stores data and programs that are running or waiting
— Long term memory is implemented by secondary memory (hard drive)

* Memory management is part of OS
— Application has no access to control memory management
* Privilege action
— Itis not safe to enable application to change memory management
* It is not effective nor safe
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History of memory management

First computer has no memory management — direct access to
memory

Advantage of system without memory management
— Fast access to memory
— Simple implementation
— Can run without operating system

Disadvantage

— Cannot control access to memory

— Strong connection to CPU architecture
— Limited by CPU architecture

* Usage

— First computer

— 8 bits computers (CPU Intel 8080, Z80, ...) - 8 bits data bus, 16 bits
address bus, maximum 64 kB of memory

— Control computers — embedded (only simple control computers)
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First memory management - Overlays

* First solution, how to use more
memory than the physical
address space allows

— Special instruction to switch part
of the memory to access by Common
address bus part

* Overlays are defined by user
and implemented by compiler

— Minimal support from OS

— It is not simple to divid data or
program to overlays

2011
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Virtual memory

 Demand for bigger protected memory that is managed by
somebody else (OS)

* Solution is virtual memory that is somehow mapped into real
physical memory

* 1959-1962 first computer Atlas Computer from Manchesteru
with virtual memory (size of the memory was 576 kB)
implemented by paging

* 1961 - Burroughs creates computer B5000 that uses segment
for virtual memory

* |Intel
— 1978 processor 8086 — first PC — simple segments
— 1982 processor 80286 — protected mode — real segmentation

— 1985 processor 80386 - full virtual memory with segmentation and
paging
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Simple segemnts — Intel 8086

* Processor 8086 has 16 bits of data bus and 20 bits of address
bus. 20 bits is problem. How to get 20 bits numbers?

* Solution is “simple” segments

* Address is composed with 16 bits address of segment and 16-
bits address of offset inside of the segment.

* Physical address is computed as:
(segment<<4)+offset

* ltis not real virtual memory, only system how to use bigger
memory
* Two types of address

— near pointer — contains only address inside of the segment, segment is
defined by CPU register

— far pointer — pointer between segments, contains segment description
and offset
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Segmentation — protected mode Inte] 80286

* Support for user definition of logical
address space
— Program is set of segments

— Each segment has it’s own meaning:
main program, function, data, library,
variable, arrayj, ...

* Basic goal — how to transform address .

Subroutine

Working
array

(segment, offset) to physical address

* Segment table — ST

— Function from 2-D (segment, offset) into 1-D (address)

— One item in segment table:
* base — location of segment in physical memory, limit — length of segment

— Segment-table base register (STBR) — where is ST in memory
— Segment-table length register (STLR) — ST size
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Hardware SU];)];)O]_T for segmentation
Segment table
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Segmentation

* Advantage of the segmentation
— Segment has defined length

— It is possible to detect access outside of the segment. It throws new
type of error — segmentation fault

— It is possible to set access for segment
* OS has more privilege than user
* User cannot affect OS

— It is possible to move data in memory and user cannot detect this shift
~ (change of the segment base is for user invisible)
* Disadvantage of segmentation

— How to rglace segments into main memory. Segments have different
length. Programs are move into memory and release memory.

— Overhead to compute physical address from virtual address (one
comparison, one addition
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Segmentation example

Subroutine Seg 0

Stack

S”Zf”ﬁ”e i ‘ limit base
’ Stack Seg 3
— 0| 1000 1400
Sat aty 1400 6300
Seg 4 2 00 4300 Main program
seg! 31100 3200 seg?
Main 41000 4700 Working array
program Seg 4
Seg 2
* It is not easy to place the segment into S SRyl

memory
— Segments has different size
— Memory fragmentation
— Segemnt moving has big overhead (is not used)
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Paging

Different solution for virtual memory implementation

Paging remove the basic problem of segments — different size

All pages has the same size that is defined by CPU architecture

Fragmentation is only inside of the page (small overhead)
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Paging

* Contiguous logical address space can be mapped to
noncontiguous physical location
— Each page has its own position in physical memory
* Divide physical memory into fixed-sized blocks called frames
— The size is power of 2 between 512 and 8 192 B
* Dived logical memory into blocks with the same size as frames.
These blocks are called pages
* OS keep track of all frames

* To run process of size n pages need to find n free frames,
Tranformation from logical address — physical address by
— PT = Page Table
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Address Translation Scheme

* Address generated by CPU is divided into:

— Page number (p) — used as an index into a page table which
contains base address of each page in physical memory

— Page offset (d) — combined with base address to define the physical
memory address that is sent to the memory unit

4

logical physical -
address address | fO000 ... 0000
h 4
CPU —> p d f d >
A

il fo ql

p{

physical
memory

page table
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Paging Examples
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Implementation of Page Table

Paging is implemented in hardware
Page table is kept in main memory
Page-table base register (PTBR) points to the page table

tIZl% ! -table length register (PTLR) indicates size of the page

In this scheme every data/instruction access requires two
memory accesses. ‘One for the page table and one for the
data/instruction.

The two memory access problem can be solved by the use of
a special fast-lookup hardware cache called assocCiative
memory or translation look-aside buffers (TLBS)
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Associative Memory

* Associative memory — parallel search — content-addressable memory
* \Very fast search Bl

Input address  Output address

100000 ABC000
100001 201000
300123 ABCO001
100002 300300

» Address translation (A", A”)

— If A" is in associative register, get Frame
— Otherwise the TBL has no effect, CPU need to look into page table

 Small TBL can make big improvement
— Usually program need only small number of pages in limited time
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Paging Hardware With TLB
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* Effective Access Time with TLB
— Associative Lookup = € time unit
— Assume memory cycle time is t = 100 nanosecond

— Hit ratio — percentage of times that a page number is found in the associative
registers; ration related to number of associative registers, Hit ratio = o

— Effective Access Time (EAT)
EAT=(t+e)a+(2t+e)(1-a)=(2-a)t +¢
Example for t=100 ns

Paging Properties

PT without TLB EAT = 200 ns | Need two access to memory
€=20ns a =60 % EAT = 160 ns
£ =20 ns a =80 % EAT = 140 ns g}nlz increase significantly access
€=20ns a =98 % EAT =122 ns

AEA4B330SS

Lecture 7 / Page 19

2011



TLB

* Typical TLB
— Size 8-4096 entries
— Hit time 0.5-1 clock cycle

— PT access time 10-100 clock cycles
— Hit ration 99%-99.99%

* Problem with context switch
— Another process needs another pages
— With context switch invalidates TBL entries (free TLB)

* (S takes care about TLB

— Remove old entries
— Add new entries

AE4B330SS Lecture 7 / Page 20 2011



Page table structure

Problem with PT size

— Each process can have it's own PT

— 32-bits logical address with page size 4 KB — PT has 4 MB
= PT must be in memory

* Hierarchical PT

— Translation is used by PT hierarchy

— Usually 32-bits logical address has 2 level PT

— PT contains reference to PT'

— ,Real page table PT' can be paged need not to be in memory

Hash PT

— Address p is used by hash function hash(p)

* Inverted PT

— One PT for all process

— Items depend on physical memory size

— Hash function has address p and process pid hash(pid, p)

AE4B330SS Lecture 7 / Page 21 2011



AEA4B330SS

Hierarchical Page Tables

* Break up the logical address space into multiple page tables

* A simple technique is a two-level page table
— A logical address (on 32-bit machine with 4K page size) is divided

Into:

* apage number consisting of 20 bits

* apage offset consisting of 12 bits
— Since the page table is paged, the page number is further divided

into:
* a 10-bit page number
* a 10-bit page offset

— Thus, a logical address is as follows:

10b

10b

12b

PT°

PT?

offset
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Two-Level Page-Table Scheme
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PAE

* Price of 8GB RAM is low but you cannot use this memory with
32-bit system. Solution 64-bit system or PAE

* Physical Address Extension = PAE

* Using PAE you change 32-bit address space to 36-bit address
space, it can address 64 GB RAM
* Change of page table:
— Page table translate 20bits of page number to 24bits of frame number

— Page table size is increased twice, because there was no space for
additional 4 bits

— Maximal linear size for one process is still 4GB
— 2 processes can use 8GB

— MS Windows change 2level page table into 3 level to keep smaller
size of PT

PAE is overhead for the OS but it enables to use more memory
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Hierarchical PT

64-bits address space with page size 8 KB
— 51 bits page number — 2 Peta (2048 Tera) Byte PT

It is problem for hierarchical PT too:
— Each level brings new delay and overhead, 7 levels will be very slow

UltraSparc — 64 bits ~ 7 level — wrong

Linux — 64 bits (Windows similar)

— Trick: logical address uses only 43 bits, other bits are ignored
— Logical address space has only 8 TB

— 3 level by 10 bits of address

— 13 bits offset inside page

— Itis useful solution
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* The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same location.

* Virtual page numbers are compared in this chain searching for a
match. If a match is found, the corresponding physical frame is

extracted.
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Hashed Page Tables

* Common in address spaces > 32 bits

mogmaladdress |
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Inverted Page Table

* One entry for each real page of memory

* Entry consists of the virtual address of the page stored in that
real memory location, with information about the process that
owns that page

* Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

* Use hash table to limit
the search to one —
or at most a few —
page-table entries ogical ysica

address | ‘L address ohysical
CPU —pid| p | d | |J\|d| > memory

}i

search l

=l
g
—

page table

AE4B330SS Lecture 7 / Page 27 2011



Shared Pages

* Shared code

— One copy of read-only
(reentrant) code shared among
processes (i.e., text editors,
compilers, window systems).

— Shared code must appear in
same location in the logical
address space of all processes

* Private code and data

— Each process keeps a separate
copy of the code and data

— The pages for the private code
and data can appear anywhere
in the logical address space
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Segmentation with paging

e Combination of both methods

* Keeps advantages of segmentation, mainly precise limitation of
memory space

* Simplifies placing of segments into virtual memory. Memory
fragmentation is limited to page size.

* Segmentation table ST can contain
— address of page table for this segment PT
— Or linear address this address is used as virtual address for paging
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Segmentation with paging

* Segmentation with paging is supported by architecture 1A-32
(e.g. INTEL-Pentium)

* |A-32 transformation from logical address space to physical

address space with different modes:

— logical linear space (4 GB), transformation identity
* Used only by drivers and OS
— logical linear space (4 GB), paging,
* 1024 oblasti a 4 MB, délka stranky 4 KB, 1024 tabulek stranek, kazda tabulka
stranek ma 1024 radku
* Pouzivaji implementace UNIX na INTEL-Pentium
— logical 2D address (segemnt, offset), segmentation
« 2"=16384 of segments each 4 GB ~ 64 TB
— logical 2D address (segemnt, offset), segmentatation with paging
* Segments select part of linear space, this linear space uses paging
* Used by windows and linux
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Segmentation with paging |A-32
16 K of segments with maximal size 4 GB for each segment

* 2 logic subspaces (descriptor TI=0/1)
— 8 K private segments — Local Description Table, LDT
— 8 K shared segments — Global Description Table, GDT

* Logic addres = (segment descriptor, offset)
— offset = 32-bits address with paging

— Segment descriptor
* 13 bits segemnt number,
* 1 bit descriptorT|,
* 2 bits Privilege levels : OS kernel, ... ,application
* Rights for r'w/e at page level

* Linear address space inside segemnt with hierchical page table
with 2 levels
— Page size 4 KB, offset inside page 12 bits,
— Page number 2x10 bits

AE4B330SS Lecture 7 / Page 31 2011



AEA4B330SS

Segmentation with Paging — Intel 386

* |A32 architecture uses segmentation with paging for memory
management with a two-level paging scheme

logical address

selector

offset

| descriptor table
segment descriptor

_.®._

linear address

directory page

offset

page directory

page frame

page table

p physical address

—

directory entry

— —® page table entry

page directory
base register

|

]
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Linux on Intel 80x86

* Uses minimal segmentation to keep memory management
implementation more portable

* Uses 6 segments:
— Kernel code
— Kernel data
— User code (shared by all user processes, using logical addresses)
— User data (likewise shared)
— Task-state (per-process hardware context)
— LDT

* Uses 2 protection levels:
— Kernel mode
— User mode
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