Lecture 5: Deadlocks,
Deadlock Risk Management

QIBBDIIGIBBDIISIBBI DI IB B I

Readers and Writers with Readers’ Priority
Shared data

® semaphore wrt, readcountmutex;
® int readcount

Initialization
® wrt = 1; readcountmutex = 1; readcount = O;
Implementation
Writer: Reader:
wait(wrt); wait(readcountmutex);
: readcount++;
writer modifies data If (readcount==1) wait(wrt);
signal(readcountmutex);
signal(wrt); |

... read shared data ...

wait(readcountmutex);
readcount--;

If (readcount==0) signal(wrt);
signal(readcountmutex);

AE4B330SS Lecture 5/ Page 2 2014

Readers and Writers with Writers’ Priority
Shared data

® semaphore wrt, rdr, readcountmutex, writecountmutex;
int readcount, writecount;

Initialization

® wrt=1; rdr = 1; readcountmutex = 1: writecountmutex = 1:
readcount = O: writecount = O;

Implementation

Reader: Writer:

wait(rdr); wait(writecountmutex);
wait(readcountmutex); writecount++;
readcount++; if (writecount==1) wait(rdr);

If (readcount == 1) wait(wrt);
signal(readcountmutex);
signal(rdr);

... read shared data ...

wait(readcountmutex);
readcount--;

if (readcount == 0) signal(wrt);
signal(readcountmutex);

AE4B330SS

signal(writecountmutex);
wait(wrt);

... modify shared data ...

signal(wrt);
wait(writecountmutex);
writecount--;

if (writecount==0) release(rdr);

signal(writecountmutex);

Lecture 5/Page 3

2014

Dining Philosophers Problém
Shared data

® semaphore chopStick[] = new Semaphore[5];

Initialization
® for(i=0; i<5; i++) chopStick]i] = 1,

Implementation of philosopher .

do {

chopStick][i].wait;

chopStick[(i+1) % 5].wait;
eating(); /l Now eating

chopStick]i].signal;

chopStick[(i+1) % 5].signal;
thinking(); /[Now thinking

} while (TRUE) ;

B This solution contains NO deadlock prevention
® Arigorous avoidance of deadlock for this task is very complicated

AE4B330SS Lecture 5/ Page 4

2014

Monitors

B A high-level abstraction that provides a convenient and effective

mechanism for process synchronization

B Only one process may be active within the monitor at a time

monitor monitor_name

{

// shared variable declarations
condition x, y; // condition variables declarations
procedure P1(...){....}

Initialization code (....) { ... }

}
}

B Two operations on a condition variable:

® x.wait () — a process that invokes the operation is
suspended.

® x.signal () — resumes one of processes (if any) that
invoked x.wait ()

AE4B330SS Lecture 5/Page 5

2014

Monitor with Condition Variables

entry queue

shared data

queues associated with

x, y conditions y +EE-

operations

initialization
code

AE4B330SS Lecture 5/ Page 6 2014

Java with Monitors

In Java each object may be used as a monitor.
Methods or block of codes requiring mutual exclusion must be explicitly marked
with the synchronized keyword.

Implementation of counting semaphore inJava:

class Semaphore {
private int signals=0;

public synchronized void s_signal() {
signals++;
notify(); // wake up sleeping waiting threads

public synchronized void s_wait() {
while (signals == 0) walit(); // sleep until notify
signals--;
}
}

Functions wait and notify keep order of sleeping threads.

AE4B330SS Lecture 5/ Page 7 2014

Contents

B The Concept of Deadlock

B Resource-Allocation Graph

B Approaches to Handling Deadlocks
B Deadlock Avoidance

B Deadlock Detection

B Recovery from Deadlock

AE4B330SS Lecture 5/ Page 8 2014

Deadlock in real-life

Charles square — no tram can continue, one need to move back
Resources are tracks — for crossing you need to allocate other tracks for your
motion

* “It takes money to make money”
* You can'’t get a job without experience; you can'’t get experience without a job

AE4B330SS Lecture 5/Page 9

2014

The Deadlock Problem

B A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.

B Example
® System has 2 files.
® P and P, each holds one file for writing and needs another one.

B Example
® Semaphores A and B, initialized to 1 (mutexes)
A P
wait (A); wait(B);

wait (B); wait(A),

AE4B330SS Lecture 5/ Page 10 2014

Bridge Crossing Example

B Traffic only in one direction.
B Each section of a bridge can be viewed as a resource.

M |f a deadlock occurs, it can be resolved if one car backs up (preempt
resources and rollback).

B Several cars may have to be backed up if a deadlock occurs.
B Starvation is possible.

AE4B330SS Lecture 5/ Page 11 2014

System Model

B Resourcetypes R, R, ..., R
CPU cycles, memory space, I/O devices

B Each resource type R has W/ instances.

B Each process utilizes a resource as follows:
® request
® use
® release

AE4B330SS Lecture 5/ Page 12 2014

Deadlock Characterization
Deadlock can occur if all four conditions hold simultaneously.

B Mutual exclusion: only one process at a time can use a resource.

B Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes.

B No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task.

M Circular wait: there exists a set{P, P, ..., P, P,} of waiting processes such that
P,is waiting for a resource that is held by P, P, is waiting for a resource that is held
by P,

I

B P is waiting for a resource that is held by P,

ENECESS ARYabngtiendriesaumerinat is held by P,
Coffman’s conditions [E. G. Coffman, 1971]

AE4B330SS Lecture 5/ Page 13 2014

Resource-Allocation Graph

B A setof vertices Vand a set of edges E

M Vs partitioned into two types (bipartite graph):
® P={P, P, ..., P}, the set consisting of all the processes in the system.
® R={R, R, ..., R}, the set consisting of all resource types in the system.

B Request edge — directed edge P,— R
B Assignment edge — directed edge R — P,

B Process

O

B Resource Type with 4 instances

B P requests an instance of R
B P is holding an instance of F1’j

AE4B330SS Lecture 5/ Page 14 2014

Oono
Oono

ot
oo

=y

Example of a Resource Allocation Graph

R, R,
@ é
\ \

AE4B330SS Lecture 5/ Page 15 2014

Resource Allocation Graph With A Cycle

0

-] : \.
R, ° o |
Deadlock No Deadlock

B Conclusions:
® |[f graph contains no cycles = no deadlock.

® |f graph contains a cycle =
> if only one instance per resource type, then deadlock.
> if several instances per resource type, possibility of deadlock.

AE4B330SS Lecture 5/ Page 16 2014

Can Scheduling Avoid Deadlocks?

M Consider an example:

® Processes A, B, C compete for
3 single-instance resources R, S, T

QP@

S

QP@

-0
©
10
©
0

@ A B (c

)]

Py
w

1. A requests
2. C requests
3. A requests
4. C requests
5. A releases
6

HhITVIOVOLHD

(AP@ %DCCP ACCP DCICHIOICICAIOIONC

S||T

S

RIIS]I|T RIIS]I|T RIIS]|T RI[S|I|T

. A releases

no deadlock results

No more problems
with B

* Can a careful scheduling avoid deadlocks?
— What are the conditions?
— What algorithm to use?

AE4B330SS Lecture 5/ Page 17 2014

Approaches to Handling Deadlocks

B Ostrich approach: Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating systems, including
UNIX.

B Deadlock Prevention: Take such precautions that deadlock state is
unlikely.

B Deadlock Avoidance: Ensure that the system will never enter a
deadlock state.

B Detect & Recover: Allow the system to enter a deadlock state and
then recover.

AE4B330SS Lecture 5/ Page 18 2014

Deadlock Prevention

Try to break at least one of the Coffman conditions
Restrain the ways request can be made

B Mutual Exclusion — not required for sharable resources; must hold
for nonsharable resources.

B Hold and Wait — must guarantee that whenever a process requests
a resource, it does not hold any other resources.

® Require process to request and be allocated all its resources before it begins
execution, or allow process to request resources only when the process has
none.

® [ow resource utilization; starvation possible.

AE4B330SS Lecture 5/ Page 19 2014

Deadlock Prevention (Cont.)

B No Preemption -

® [f a process that is holding some resources requests another resource that
cannot be immediately allocated to it, then all resources currently being held
are released.

® Preempted resources are added to the list of resources for which the process
is waiting.

® Process will be restarted only when it can regain its old resources, as well as
the new ones that it is requesting.

B Circular Wait — impose a total ordering of all resource types, and
require that each process requests resources in an increasing order
of enumeration.

AE4B330SS Lecture 5/ Page 20 2014

Deadlock Avoidance

Requires that the system has some additional a priori information
available.

B Simplest and most useful model requires that each process
declares the maximum number of resources of each type that it
may need.

B The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

B Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

AE4B330SS Lecture 5/ Page 21 2014

Safe State

B When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state.

B System is in safe state if there exists a safe sequence of all
processes.

B Sequence of processes <P, P, ..., P> is safe if for each P, the
resources that P.can still request can be satisfied by currently
available resources + resources held by all the P, with k<!.

® If P.resource needs are not immediately available, then P.can wait until all P,
have finished. |

® When P, is finished, P.can obtain needed resources, execute, return allocated
resources, and terminate.

® When P terminates, P, can obtain its needed resources, and so on.

AE4B330SS Lecture 5/ Page 22 2014

Process Q

Release(A)

Release(B)

Require(A)

Require(B)

AE4B330SS

Basic Facts — System states

B |f a system is in safe state = no deadlocks.
M |f a system is in unsafe state = possibility of deadlock.
B Avoidance = ensure that a system will never enter an unsafe state.

>
A

P and Q need A

Require(A) Require(B)

Release(A) Release(B) Process P

Lecture 5/ Page 23 2014

Resource-Allocation Graph Algorithm

B Claim edge P, — R indicates that process P, may request resource R
® represented by a dashed line.

B Claim edge changes to a request edge when the process actually
requests the resource.

B When a resource Is released by a process, assignment edge reconverts
to a claim edge.

B Resources must be claimed in the system a priori.

R-] R1

.
. P IS
. 4 .
[N 14 LY
- o4 [N
. e *e
Q‘j

R, R>

Resource-Allocation Graph For Unsafe State In Resource-Allocation
Deadlock Avoidance Graph

AE4B330SS Lecture 5/ Page 24 2014

Banker’s Algorithm

B Banker’s behavior (example of one resource type with many instances):

AE4B330SS

® (Clients are asking for loans up-to an agreed limit
® The banker knows that not all clients need their limit simultaneously

® All clients must achieve their limits at some point of time but not necessarily
simultaneously

® After fulfilling their needs, the clients will pay-back their loans

® Example:
» The banker knows that all 4 clients need 22 units together, but he has only total 10 units

Client Used Max. @ Used Max. Client

Adam 0 6 Adam 1] 6 Adam
Eve 0 5 Eve 1 5 Eve
Joe 0| 4 Joe 2 4 Joe

N 7 A 7

hnﬂ“l

hnl‘\nl “nl‘\hl

Lecture 5/ Page 25 2014

Banker’s Algorithm (cont.)

B Always keep so many resources that satisfy the needs of at least
one client

B Multiple instances.
B Each process must a priori claim maximum use.
B When a process requests a resource it may have to wait.

B \When a process gets all its resources it must return them in a
finite amount of time.

AE4B330SS Lecture 5/ Page 26 2014

AE4B330SS

Data Structures for the Banker’s Algorithm

Let n = number of processes, and
m = number of resources types.

M Available: Vector of length m. If available [] = k, there are k
instances of resource type Ravailable.

B Max: n x mmatrix. If Max[i,j] = k, then process P. may
request at most k instances of resource type R.

W Allocation: nx mmatrix. If Allocation[ij] = kthen P.is
currently allocated k instances of R

B Need: nx mmatrix. If Need[i,j] = k, then P may need k more
instances of Rto complete its task.

Need [i,j] = Max{i,j] — Allocation [i,j].

Lecture 5/ Page 27 2014

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish[i] = falsefori=1,2, ..., n.
2. Find and /such that both:
(a) Finish[i] = false
(b) Need < Work
If no such / exists, go to step 4.
3. Work = Work + Allocation,

Finish[i] = true
go to step 2.

4. If Finish[i] == true for all j, then the system is in a safe state.

AE4B330SS Lecture 5/ Page 28 2014

Resource-Request Algorithm for Process P,

Request = request vector for process P.
Request| j] == k means that process P wants k instances of

resource type A,
1. If Request < Need go to step 2. Otherwise, raise error condition, since

process has exceeded its maximum claim
2. If Request < Available, go to step 3. Otherwise P. must wait, since resources

are not available.
3. Test to allocate requested resources to P. by modifying the state as follows:
Available = Available - Request;
Allocation= Allocation + Request;
Need = Need — Request;
® |f safe = the resources are allocated to Pi.
® |funsafe = Pi must wait, and the old resource-allocation state is restored

AE4B330SS Lecture 5/ Page 29 2014

Example of Banker’s Algorithm

W 5 processes Fthrough P,; 3 resource types

A (10 instances), B (5instances, and C (7 instances).

B Snapshot at time T

Allocation
ABC
010

200
302
211
002

.0 U0 U0 U _UT

Max
ABC
753
322

902
222

433

Need
ABC
743

122
600
011
431

Total
ABC
1057

Allocated
725
Available
332

B The system is in a safe state since the sequence
<P, P, P, P, P> satisfies safety criteria

AE4B330SS

Lecture 5/ Page 30

2014

Example (Cont.): P, requests (1,0,2)

B Check that Request < Available
thatis, (1, 0, 2) < (3, 3, 2) = true.

Allocation Max Need Available
ABC ABC ABC ABC
R, 010 753 743 230
P, 302 322 020
P, 302 902 600
P, 211 222 011
P, 002 433 431

M Executing safety algorithm shows that sequence <P, P,, P,, P,
P,) satisfies safety requirement.

B Can request for (3,3,0) by P4 be granted?
B Can request for (0,2,0) by PO be granted?

AE4B330SS Lecture 5/ Page 31 2014

Deadlock Detection

B Allow system to enter deadlock state
B Detection algorithm
B Recovery scheme

AE4B330SS Lecture 5/ Page 32 2014

Single Instance of Each Resource Type
B Maintain wait-for graph

® Nodes are processes.

® P — Pif P, is waiting for P.
B Periodically invoke an algorithm that searches for a cycle in the

graph.

B An algorithm to detect a cycle in a graph requires an order of r?
operations, where nis the number of vertices in the graph.

Resource-
Allocation
Graph

AE4B330SS

(b)

Lecture 5/ Page 33

Corresponding
wait-for graph

2014

Several Instances of a Resource Type

B Available: A vector of length m indicates the number of
available resources of each type.

B Allocation: An nx m matrix defines the number of resources
of each type currently allocated to each process.

B Request: An nx m matrix indicates the current request of
each process. If Request|[i] == k, then process P is

requesting k more instances of resource type. R.

AE4B330SS Lecture 5/ Page 34 2014

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:
(a) Work = Available
(b) Fori=1,2,..., n, if Allocation # 0, then
Finish[i] = false; otherwise, Finish[i] = true.
2. Find an index i such that both:
(@) Finish[i] == false
(b) Request < Work
If no such / exists, go to step 4.

3. Work = Work + Allocation,

Finish[i] = true
go to step 2.

4. It Finish[i] == false, for some i, 1 < /< n, then the system s in
deadlock state. Moreover, if Finish[i] == false, then P.is deadlocked

The algorithm requires an order of O(m x n? operations to detect whether the system is
in deadlocked state.

AE4B330SS Lecture 5/ Page 35 2014

Example of Detection Algorithm

B Five processes P, through P,three resource types
A (7 instances), B (2 instances), and C (6 instances).
M Snapshot at time T;:

Allocation Request Total

ABC ABC ABC
P 010 000 726
P, 200 202 Allocated
P, 303 000 726
P, 211 100 Available
P 002 002 000

Sequence <P, P, P, P, P> will result in Finish[i] = true for all i

AE4B330SS Lecture 5/ Page 36 2014

Example (Cont.)

B P, requests an additional instance of type C. The Request matrix

changes

Request

ABC
P 000
P 201
P, 001
P, 100
P 002

M State of system?
® System would now get deadlocked
® Can reclaim resources held by process P, but insufficient resources to fulfill
other processes; requests.
® Deadlock exists, consisting of processes P, P, P, and P,

AE4B330SS Lecture 5/ Page 37 2014

Detection-Algorithm Usage

B When, and how often, to invoke depends on:
® How often a deadlock is likely to occur?

® How many processes will need to be rolled back?
> one for each disjoint cycle

M |f detection algorithm is invoked arbitrarily, there may be many cycles
In the resource graph and so we would not be able to tell which of the
many deadlocked processes “caused” the deadlock.

AE4B330SS Lecture 5/ Page 38 2014

Recovery from Deadlock: Process Termination

B Abort all deadlocked processes
® Very expensive

B Abort one process at a time until the deadlock cycle is eliminated

B [n which order should we choose to abort?
® Priority of the process.
® How long process has computed, and how much longer to completion.
® Resources the process has used.
® Resources process needs to complete.
® How many processes will need to be terminated.
® |[s process interactive or batch?

AE4B330SS Lecture 5/ Page 39 2014

Recovery from Deadlock: Resource Preemption

B Selecting a victim — minimize cost.
B Rollback — return to some safe state, restart process for that state.

B Starvation — same process may always be picked as victim,
include number of rollback in cost factor.

AE4B330SS Lecture 5/ Page 40 2014

End of Lecture 6

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41

