Lecture 4: Process scheduling and
Synchronization
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Dispatcher

B Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
Involves:

® switching context

® switching to user mode

® jumping to the proper location in the user program to restart that
program

B Dispatch latency — time it takes for the dispatcher to stop
one process and start another running — overhead
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Scheduling Criteria & Optimization

B CPU utilization — keep the CPU as busy as possible
® Maximize CPU utilization

B Throughput - # of processes that complete their execution per
time unit

® Maximize throughput

B Turnaround time — amount of time to execute a particular
process

® Minimize turnaround time

B Waiting time — amount of time a process has been waiting in
the ready queue

® Minimize waiting time
B Response time — amount of time it takes from when a request

was submitted until the first response is produced, not output
(for time-sharing and interactive environment )

® Minimize response time
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First-Come, First-Served (FCFS) Scheduling

B Most simple nonpreemptive scheduling.
Process Burst Time

P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P,, P,, P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

B Waiting time for P, =0; P, =24; P=27
B Average waiting time: (0 + 24 + 27)/3 =17

AE4B330SS Lecture 4 / Page 4 2014



AE4B330SS

B The Gantt chart for the schedule is:

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P,, P,, P,

P,

P,

0

3

6

B Waiting time for P,=6,P,=0.P,=3

B Average waiting time: (6 + 0 + 3)/3 =3

B Much better than previous case

B Convoy effect short process behind long process
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Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time (SRT)

B SJF is optimal — gives minimum average waiting time
for a given set of processes

AE4B330SS Lecture 4 / Page 6 2014



Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time (SRT)

B SJF is optimal — gives minimum average waiting time
for a given set of processes

AE4B330SS Lecture 4 / Page 7 2014



Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

B SJF (non-preemptive)

P, P P, P,

B Average waitingtime=(0+6+ 3+ 7)/4 =4

AE4B330SS Lecture 4 / Page 8 2014



Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

B SJF (preemptive)

P, | P, |P, | P, P, P,

0 2 4 5 7 11 16

B Average waitingtime=(9+1+ 0 +2)/4 =3
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Basic Concepts

B Maximum CPU utilization
obtained with multiprogramming

B CPU-I/O Burst Cycle — Process
execution consists of a cycle of
CPU execution and I/0O wait

B CPU burst distribution

160 |-
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120 |-

]

40 |

o
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20 |

| |
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burst duration (milliseconds)
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load store
add store CPU burs
read from file

wait for I/O [/O burst
store increment
index CPU burs
write to file

wait for I/0 } I/O burst
load store
add store CPU burs
read from file

wait for I/O I/O burst
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Determining Length of Next CPU Burst

B Can only estimate the length
B Can be done by using the length of previous CPU
bursts, using exponential averaging
. t,=actual lenght of n™ CPU burst
. T.,,;= predicted value for the next CPU burst

n+l—

1
2
3. a,0<ax1
4

ine: — — 12 F
. Define: 1, =at +{1-alr .
T 10
8_
i 6
-.—/
4_
2_
time ——»
CPU burst (t) 6 4 6 4 13 13 13
"guess" (1) 10 8 6 6 5 9 11 12

AE4B330SS Lecture 4 / Page 11 2014



Examples of Exponential Averaging

B =0

®T =1

® Recent history does not count
o =1

® 1. =0t

® Only the actual last CPU burst counts
B |[f we expand the formula, we get:
T.=o0t+(1 -o)at, + ...
+(1-a)ot +...
+(1 - ),

B Since both o and (1 - ) are less than or equal to 1,
each successive term has less weight than its
predecessor
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Priority Scheduling

B A priority number (integer) is associated with each
process

B The CPU is allocated to the process with the highest
priority (smallest integer = highest priority)
® Preemptive
® Nonpreemptive

B SJF is a priority scheduling where priority is the
predicted next CPU burst time

B Problem = Starvation — low priority processes may
never execute (When MIT shut down in 1973 their IBM
7094 - the biggest computer - they found process with
low priority waiting from 1967)

B Solution: Aging — as time progresses increase the
priority of the process
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Round Robin (RR)

B Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

B |f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time
In chunks of at most g time units at once. No process
waits more than (n-1)g time units.

B Performance
® glarge = FCFS

® gsmall = g must be large with respect to context switch,
otherwise overhead is too high
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Example of RR with Time Quantum = 20

Process Burst Time
P, 953
P, 17
P, 68
P, 24

B The Gantt chart is:

P,|P, | P, | P, |P [P, |P | P |P,]|P,

0 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but
better response
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Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

B Each queue has its own scheduling algorithm

® foreground — RR
® background — FCFS

B Scheduling must be done between the queues
® Fixed priority scheduling; (i.e., serve all from foreground then
from background). Danger of starvation.
® Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to

foreground in RR
® 20% to background in FCFS
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Multilevel Queue Scheduling

highest priority

m— —
—— —
— interactive editing processes

— batch processes

m— student processes

lowest priority
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Multilevel Feedback Queue

B A process can move between the various queues; aging
can be treated this way

B Multilevel-feedback-queue scheduler defined by the
following parameters:
® number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service
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Example of Multilevel Feedback Queue

B Three queues:
® Q@ — RR with time quantum 8 milliseconds

® Q - RRtime quantum 16 milliseconds
® Q-FCFS
B Scheduling

® A new job enters queue Q,. When it gains CPU, job receives 8
milliseconds. If it exhausts 8 milliseconds, job is moved to queue Q.

® At Q the job receives 16 additional milliseconds. If it still does not
complete, it is preempted and moved to queue

> quantum = 8

il
> quantum = 16

—>{ FCFS :
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Multiple-Processor Scheduling

B CPU scheduling more complex when multiple CPUs are
available
® Multiple-Processor Scheduling has to decide not only which
process to execute but also where (i.e. on which CPU) to execute it
B Homogeneous processors within a multiprocessor

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

B Symmetric multiprocessing (SMP)— each processor is
self-scheduling, all processes in common ready queue, or
each has its own private queue of ready processes

B Processor affinity — process has affinity for the processor
on which it has been recently running
® Reason: Some data might be still in cache

® Soft affinity is usually used — the process can migrate among
CPUs
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® Fgefative priority “normal” is a base priority for each class — starting
p‘ﬁ@rlty of the thread

tdeR
mh w

Windows XP Priorities

Priority classes (assigned to each process)

;Ieal- high above o below idI.e .
ime normal normal priority
time-critical i 15 5 1 15 5
highest 26 15 12 10 8 6
above normal 25 14 11 9 T 5
normal 24 13 10 8 6 A
below normal 23 | 9 i = 3
lowest 22 11 8 6 - 2
idle 16 1 1 1 1 1

® \Aihen the thread exhausts its quantum, the priority is lowered

® Wh’én the thread comes from a wait-state, the priority is increased
depending on the reason for waiting

AE4B330SS

» A thread released from waiting for keyboard gets more boost than a thread
having been waiting for disk /O
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Linux Scheduling

B Two algorithms: time-sharing and real-time

B Time-sharing
® Prioritized credit-based — process with most credits is
scheduled next
® Credit subtracted when timer interrupt occurs
® When credit = 0, another process chosen

® When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history

B Real-time
® Soft real-time

® POSIX.1b compliant — two classes

» FCFS and RR
> Highest priority process always runs first
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Real-Time Systems

A real-time system requires that results be not only correct
but in time
® produced within a specified deadline period

An embedded system is a computing device that is part of
a larger system
® automobile, airliner, dishwasher, ...

A safety-critical system is a real-time system with
catastrophic results in case of failure
® e.g., airplanes, racket, railway traffic control system

A hard real-time system guarantees that real-time tasks
be completed within their required deadlines

® mainly single-purpose systems
A soft real-time system provides priority of real-time tasks
over non real-time tasks

® a “standard” computing system with a real-time part that takes
precedence
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B Periodic processes require the CPU at specified

B pis the duration of the period

B dis the deadline by when the process must be
serviced (must finish within d) — often equal to p

Real-Time CPU Scheduling

intervals (periods)

M {is the processing time

AE4B330SS

Period

Period,
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Scheduling of two and more tasks

N
£

Can be scheduled if r :Z L <1 (N =number of processes)

r — CPU utilization i=1 P;

Process P,: service time = 20, period = 50, deadline = 50
Process P,: service time = 35, period = 100, deadline = 100

20 35
r=—+ =0.75<1 = schedulable
50 100
When P, has a higher priority than P,, a failure occurs:
Deadlines P, Py P
| I32‘| | | P, | | | | | | | |

0O 10 20 30 40 50 60 70 80 90 100 110 120
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Rate Monotonic Scheduling (RMS)

B A process priority is assigned based on the inverse of its period
B Shorter periods = higher priority;
B Longer periods = lower priority

B P, is assigned a higher priority than P,.

Deadlines P, Py Py P, P, P,

! . ’ ’

FT1 |P2| FT1 I32| | I:)|1 |P2| FT1 I32| | |
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200

Process P,: service time = 20, period = 50, deadline = 50
Process P,: service time = 35, period = 100, deadline = 100

works well
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Missed Deadlines with RMS

failure
Deadlines P4 P P, P, P
' Voo Vo

P, P,

|
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160}

Process P,: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80

25 35
r= =0,9375 <1 = schedulable —

50 80 N |n(V2-1)
N 2 0,828427

RMS is guaranteed r=S 0 N (Y21) :
to work if ; p; ’ 3 0,779763
B b ¢ 4 0,756828
N'= number of processes . \(¥5_1)=1n2~0.693147 5 0,743491
sufficient condition N 10 0,717734
20 0,705298
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* Examples
Pil p t Th Tp)
210,286 0,286
310,375 | 0,661
1 0,100 0,761
Pi Pt Th ITh)
210,333 0,333
310,375| 0,708
10,100 0,808
Pl i P; t: T:/pi Z(T/pi)
4 10,250 0,250
51/0,200 0,450
6 | 3 0,500 0,950
P i p |t Th | XTjp)
4 1 0250 0,250
5 2/0,4400 0,650
20 7 0,350 | 1,000

AE4B330SS

Analysis of RMS

0 1 2 3 4 5 6

7 8 9 10 11 3(3 2 _1) - 0,7797

Lecture 4 / Page 29

11

12

13

14

15

16

17 18

2014

19



RMS detailed analysis
* Lehoczky, Sha & Ding [1989]:

- Sort proceses {P,i=1...N| p, < p,.,,i=1...N—1]
— Let's define W((t), L for i=1...N as

I

_ W (t) represents
= Z t/p;] (t)=w (1), cumulative demands

J= P, ... P, in time [0, (]
Li_mln{ t<t}L( )’ L_maX{lsisN}Li

— RMS is working correctly if and only if L < 1.
— For definition W(t) time tis continuos.

— Lehoczky, Sha and Ding prove, that W(t) can be
computed only in multiple of periods of all processes

— Example for {p,= 4; p,= 5; p,= 13} it is sufficient to

compute W(f) and L(t) only for
te{4,5,8,10,12,13}
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Examples RMS
» How to compute W(t), L, L

RMS failed L>1
iVpi|Ti|Tipi |2(Ti/p;) Li4)|L;5)|Li®)] L L
1141 1 |0,250| 0,250 0,250] 0,400{ 0,333] 0,250
2]l 51 110,200] 0,450 0,500/ 0,600( 0,667} 0,500} 1,167
31 6| 310,500| 0,950 1,250] 1,200] 1,167] 1,167
— RMS no failure L<=1
ilpi|Ti| Tiloi |Z(Tilpi) Li(4)|L;B)|Li@)L;A0)JL;A2) L;(A5)L;A6) Li(20)) L; L
11 4] 1 ]0,250] 0,250 0,250} 0,400 0,250 0,300f 0,250 0,267] 0,250] 0,250} 0,250
2l 51| 210,400 0,650 0,750/ 0,800( 0,750 0,700 0,750 0,667| 0,750 0,650] 0,650] 1,000
3120 7 |10,350| 1,000 2,500] 2,200] 1,625 1,400f 1,333| 1,133| 1,188] 1,000} 1,000

AE4B330SS
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Earliest Deadline First (EDF) Scheduling

B Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority.

‘Deadlines P, P P, P, P,
| ! ! U

|P1 | | |P2 |P1 | |P2 |P1 | P-? | | |

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160}

Process P,: service time = 25, period = 50, deadline = 50

Process P,: service time = 35, period = 80, deadline = 80

Works well even for the case when RMS failed
PREEMPTION may occur
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RMS and EDF Comparison

B RMS:
® Deeply elaborated algorithm
® Deadline guaranteed if the condition r<N( \/2 1)
IS satisfied (sufficient condition)
® Used in many RT OS

B EDF:

® II:’erc:|0d|c processes deadlines kept even at 100% CPU
oa

® Consequences of the overload are unknown and
unpredictable

® When the deadlines and periods are not equal, the
behaviour is unknown
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Process synchronization
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Cooperating Processes

B Independent process cannot affect or be affected by
the execution of another process

B Cooperating process can affect or be affected by the
execution of another process

B Advantages of process cooperation
® Information sharing
® Computation speed-up
® Modularity
® Convenience

B Producer-Consumer Problem

® Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer process
» unbounded-buffer places no practical limit on the size of the buffer

» bounded-buffer assumes that there is a fixed buffer size
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Interprocess Communication (IPC)

B Mechanism for processes to communicate and to
synchronize their actions

B [PC Implementation

® Message system — processes communicate with each other
without resorting to shared variables

® Shared memory — not available for distributed systems

B Message system facility provides two operations:
® send(message) — message size fixed or variable
® receive(message)

B If Pand Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive

B [mplementation of communication link
® physical (e.g., hardware bus, network)
® |ogical (e.g., logical properties)
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Direct & Indirect Communication

B Direct Communication

® Processes must name each other explicitly:
» send (P, message) — send a message to process P
> receive(Q, message) — receive a message from process Q

® Properties of communication link
» Links are established automatically
» A link is associated with exactly one pair of communicating processes
> Between each pair there exists exactly one link
» The link may be unidirectional, but is usually bi-directional

B |Indirect Communication

® Messages are directed and recelved from mailboxes (also referred
to as ports)
» Each mailbox has a unique id and is created by the kernel on request
» Processes can communicate only if they share a mailbox

® Properties of communication link

Link established only if processes share a common mailbox

» A link may be associated with many processes

» Each pair of processes may share several communication links
> Link may be unidirectional or bi-directional

v
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Synchronization

B Message passing may be either blocking or non-
blocking

B Blocking is considered synchronous

® Blocking send: the sender blocks until the message is
received by the other party

® Blocking receive: the receiver block until a message is
available
B Non-blocking is considered asynchronous

® Non-blocking send: the sender sends the message and
continues executing

® Non-blocking receive: the receiver gets either a valid
message or a null message (when nothing has been sent to
the receiver)

B Often a combination:
® Non-blocking send and blocking receive
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Producer & Consumer Problem

Message passing:

#define BUF_SZ =20 /* depends on the mailbox size */
typedef struct { ... } item_t;

Producer: Consumer:
void producer() { void consumer() {
item_t item; item_t item;
message m; message m;
while (1) { for (i=0; i<KBUF_SZ; i++)
[* Generate new item */ send(producer, &m);
receive(consumer, &m); while (1) {
/* free slot */ receive(producer, &m)
build_msg(&m, item); item = extract_item(&m);
send(consumer, &m); send(producer, &m);
} [* Process nextConsumed */
} }
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Example

B Concurrent access to shared data may result in data
Inconsistency

B Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

B Suppose that we wanted to provide a solution to the
producer-consumer problem:

® We have a limited size buffer (N items). The producer puts data
into the buffer and the consumer takes data from the buffer

® We can have an integer count that keeps track of the number of
occupied buffer entries. Initially, count is set to 0.

® |t is incremented by the producer after it inserts a new item in
the buffer and is decremented by the consumer after it
consumes a buffer item

b[0] Db[1] Db[2] Db[3] Db[4] ... Db[N-1]
out1 in?
b[0] b[1] b[2] b[3] [ b[4] ... b[N-1]

int out?
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Producer & Consumer Problem

Shared data:

#define BUF_SZ =20
typedef struct { ... } item;
item buffer[BUF_SZ];

int count = 0;

Producer:

void producer() {

intin = 0;

item nextProduced,;

while (1) {
[* Generate new item */
while (count == BUF_SZ) ;

[* do nothing */

buffer[in] = nextProduced,;
In=(in +1) % BUF_SZ,
count++ ;

}

}

Consumer:
void consumer() {

Int out = 0;

item nextConsumed,

while (1) {
while (count == 0) ;
| /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUF_SZ;
count-- ;
[* Process nextConsumed */

}

B This is a naive solution that does not work
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Race Condition

B count++ could be implemented as

reg1 = count
regl =regl + 1
count = reg1

B count-- could be implemented as

reg2 = count
reg2 =reg2 - 1
count = reg2

B Consider this execution interleaving with “count = 5” initially'

SO0: producer executes reg1 = count {
S1: producer executes regl =reg1 + 1 { }
S2: consumer executes reg2 = count {reg2 = 5}
S3: consumer executes reg2 =reg2 — 1 { = 4}
S4: consumer executes count = reg2 {

{

S5: producer executes count = reg1

count 4}
count = 6}

B Variable count represents a shared resource
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Critical-Section Problem

What is a CRITICAL SECTION?

Part of the code when one process tries to access a particular resource
shared with another process. We speak about a critical section related to
that resource.

1. Mutual Exclusion — If process P.is executing in its critical section,

then no other processes can be executing in their critical sections
related to that resource

2. Progress — If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then one of the processes that wants to enter the critical section
should be allowed as soon as possible

3. Bounded Waiting — A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section and
before that request is granted

® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the N processes
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Critical Section Solution
Critical section has two basic operation: enter CS and
leave CS
Possible implementation of this operation:
B Only SW at application layer
B Hardware support for operations
B SW solution with supprot of OS
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SW solution for 2 processes

B Have a variable turn whose value indicates which process
may enter the critical section. If turn == 0 then P, can enter, if
turn == 1 then P, can.

P, P,

while(TRUE) { while(TRUE) {
while(turn!=0); /* wait */ while(turn!=1); /* wait */
critical_section(); critical_section();
turn = 1; turn = O;
noncritical_section(); noncritical_section();

} }

B However:

® Suppose that P, finishes its critical section quickly and sets furn = 1;
both processes are in their non-critical parts. P, is quick also in its
non-critical part and wants to enter the critical section. As turn== 1, it
will have to wait even though the critical section is free.

» The requirement #2 (Progression) is violated

» Moreover, the behaviour inadmissibly depends on the relative speed of
the processes
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Peterson’s Solution

B Two processes solution from 1981

B Assume that the LOAD and STORE instructions are atomic; that is,
cannot be interrupted.

B The two processes share two variables:
® intturn;
® Boolean flag[2]

B The variable turn indicates whose turn it is to enter the critical section.

B The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process P.is ready (/= 0,1)

j=1-;

flag[i] = TRUE;

turn = j;

while ( flag[j] && turn == j);
// CRITICAL SECTION

flag[i] = FALSE;
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Synchronization Hardware

B Many systems provide hardware support for critical
section code

B Uniprocessors — could disable interrupts
® Currently running code would execute without preemption

® Dangerous to disable interrupts at application level
» Disabling interrupts is usually unavailable in CPU user mode

® Generally too inefficient on multiprocessor systems
» Operating systems using this are not broadly scalable

B Modern machines provide special atomic hardware
Instructions
> Atomic = non-interruptible
® Test memory word and set value
® Swap contents of two memory words

® For computers with 2 or more cores — real problem of
synchronization

» Locking bus
» Cache snooping — synchronization of L1 and L2 caches
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TestAndSet Instruction

B Semantics:
boolean TestAndSet (boolean *target)

{

boolean rv = *target;
*target = TRUE;
return rv:

}

B Shared boolean variable lock, initialized to false.

B Solution:
while (TestAndSet (&lock )) ; // active waiting
/| critical section |
lock = FALSE;
/[ remainder section
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Swap Instruction

B Semantics:
void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a — *b,

*b = temp:

}
B Shared Boolean variable lock initialized to FALSE; each
process has a local Boolean variable key.

B Solution:

key = TRUE;

while (key == TRUE) { // waiting

Swap (&lock, &key );

}
/I critical section

lock = FALSE;
/l  remainder section
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Synchronization without active waiting

B Active waiting waste CPU
® Can lead to failure if process with high priority is actively waiting for
process with low priority

B Solution: blocking by system functions
® sleep() the process is inactive _ N _
® wakeup(process) wake up process after leaving critical section

void producer() {

while (1) {
if (count == BUFFER_SIZE) sleep(); /I if there is no space wait - sleep
buffer[in] = nextProduced; in = (in + 1) % BUFFER_SIZE;
count++ ;
if (count == 1) wakeup(consumer); /I if there is something to consume
}
}
void consumer() {
while (1) {
if (count == 0) sleep(); /[ cannot do anything — wait - sleep
nextConsumed = buffer[out]; out = (out + 1) % BUFFER_SIZE;
count-- ;
if (count == BUFFER_SIZE-1) wakeup(producer); // now there is space for new product
}
}
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Synchronization without active waiting (2)

B Presented code is not good solution:

® (Critical section for shared variable count and function sleep() is not
solved

» Consumer read count == 0 and then Producer is switch before it call
sleep() function

» Producer insert new product into buffer and try to wake up Consumer
because count == 1. But Consumer is not sleeping!

» Producer is switched to Consumer that continues in program by calling
sleep() function

» When producer fill the buffer it call function sleep() — both processes are
sleeping!

B Better solution: Semaphores
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Semaphore

B Synchronization tool that does not require busy waiting
® Busy waiting waists CPU time

B Semaphore S — system object

® With each semaphore there is an associated waiting queue. Each
entry in waiting queue has two data items:
» value (of type integer)
> pointer to next record in the list

® Two standard operations modify S: wait() and signal()

wait(S) {
value--;
if (value < 0) {
add caller to waiting queue
block(P); }

b
signal(S) {
value++;
if (value <= 0) {
remove caller from the waiting queue
wakeup(P); }
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Semaphore as General Synchronization Tool

B Counting semaphore — the integer value can range over
an unrestricted domain

B Binary semaphore —the integer value can be only 0 or 1
® Also known as mutex lock

B Can implement a counting semaphore S as a binary
semaphore

B Provides mutual exclusion (mutex)

Semaphore S; // initialized to 1
wait (S);

Critical Section
signal (S);
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Spin-lock

B Spin-lock is a general (counting) semaphore using busy

waiting instead of blocking

® Blocking and switching between threads and/or processes may be
much more time demanding than the time waste caused by short-

time busy waiting
® One CPU does busy waiting and another CPU executes to clear
away the reason for waiting
B Used in multiprocessors to implement short critical sections

® Typically inside the OS kernel

B Used in many multiprocessor operating systems
® Windows 2k/XP, Linuxes, ...
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Deadlock and Starvation

B Overlapping critical sections related to different
resources

B Deadlock — two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes

M |etSand Q be two semaphores initialized to 1

P
walt (S): — wait (Q);
[preempted?walt wait (S);
signal (S); lsignal (Q);
signal (Q); signal (S);

B Starvation — indefinite blocking. A process may never
be removed from the semaphore queue in which it is
suspended.
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Classical Problems of Synchronization

B Bounded-Buffer Problem
® Passing data between 2 processes

B Readers and Writers Problem
® Concurrent reading and writing data (in databases, ...)

B Dining-Philosophers Problem from 1965
® An interesting illustrative problem to solve deadlocks
> Five philosophers sit around a table; they either think or eat
» They eat slippery spaghetti and each needs two sticks (forks)

» What happens if all five philosophers
pick-up their right-hand side stick?

AE4B330SS Lecture 4 / Page 56 2014



Bounded-Buffer Problem using Semaphores
B Three semaphores

® mutex — for mutually exclusive access to the buffer — initialized to 1

® used — counting semaphore indicating item count in buffer — initialized
to 0

® free — number of free items — initialized to BUF_SZ

void producer() {
while (1) { /* Generate new item into nextProduced */
wait(free);
wait(mutex);
buffer[in] = nextProduced; in = (in + 1) % BUF_SZ;
signal(mutex);
signal(used);
}
b

void consumer() {
while (1) { wait(used);
wait(mutex);
nextConsumed = buffer[out]; out = (out + 1) % BUF_SZ;
signal(mutex);
signal(free);
/* Process the item from nextConsumed */

}
¥
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Readers and Writers

B The task: Several processes access shared data
» Some processes read the data — readers
» Other processes need to write (modify) the data — writers
® Concurrent reads are allowed
» An arbitrary number of readers can access the data with no limitation
® Writing must be mutually exclusive to any other action (reading and
writing)
» At a moment, only one writer may access the data
» Whenever a writer modifies the data, no reader may read it

B Two possible approaches

® Priority for readers
» No reader will wait unless the shared data are locked by a writer. In other
words: Any reader waits only for leaving the critical section by a writer
» Consequence: Writers may starve
® Priority for writers
» Any ready writer waits for freeing the critical section (by reader of writer).
In other words: Any ready writer overtakes all ready readers.
» Consequence: Readers may starve
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Readers and Writers with Readers’ Priority
Shared data

® semaphore wrt, readcountmutex;
® int readcount

Initialization
® wrt = 1; readcountmutex = 1: readcount = O;

Implementation

Writer: Reader:
wait(wrt); wait(readcountmutex);
: readcount++;
writer modifies data If (readcount==1) wait(wrt);

signal(readcountmutex);
signal(wrt); |
... read shared data ...

wait(readcountmutex);
readcount--;

If (readcount==0) signal(wrt);
signal(readcountmutex);
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Readers and Writers with Writers’ Priority

Shared data

® semaphore wrt, rdr, readcountmutex, writecountmutex;

int readcount, writecount;

Initialization

® wrt=1; rdr = 1; readcountmutex = 1: writecountmutex = 1:

readcount = O: writecount = O;

Implementation

Reader:

wait(rdr);
wait(readcountmutex);
readcount++;

if (readcount == 1) wait(wrt);
signal(readcountmutex);
signal(rdr);

... read shared data ...
wait(readcountmutex);
readcount--;

if (readcount == 0) signal(wrt);
signal(readcountmutex);

AE4B330SS
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Writer:

wait(writecountmutex);
writecount++;

if (writecount==1) wait(rdr);
signal(writecountmutex);
wait(wrt);

... modify shared data ...

signal(wrt);
wait(writecountmutex);
writecount--;

if (writecount==0) release(rdr);
signal(writecountmutex);
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Monitors

B A high-level abstraction that provides a convenient and
effective mechanism for process synchronization
L tiny one process may be active within the monitor at a
ime
monitor monitor_name

{

// shared variable declarations
condition x, y; // condition variables declarations
procedure P1 (...){ .... }

procedu“r;e Pn(...){...... }

Initialization code ( ....) { ... }

}
}

B Two operations on a condition variable:

® x.wait () — a process that invokes the operation is
suspended.

® x.signal () — resumes one of processes (if any) that
iInvoked x.wait ()
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Monitor with Condition Variables

entry queue

shared data

queues associated with

x, y conditions y +EE-

operations

initialization
code
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Semaphores in Java

B Java is using Monitor for synchronization
B User can define counting semaphore as follows:

public class CountingSemaphore {

private int signals = 1;

public synchronized void wait() throws InterruptedException{
while(this.signals == 0) wait();
this.signals--;

}

public synchronized void signal() {
this.signals++;
this.notify();

}
}
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Synchronization Examples

B Windows XP Synchronization

® Uses interrupt masks to protect access to global resources on
uniprocessor systems

® Uses spinlocks on multiprocessor systems

® Also provides dispatcher objects which may act as either mutexes
and semaphores

® Dispatcher objects may also provide events
» An event acts much like a condition variable
B Linux Synchronization
® Disables interrupts to implement short critical sections
® Provides semaphores and spin locks

B Pthreads Synchronization

® Pthreads API is OS-independent and the detailed implementation
depends on the particular OS
® By POSIX, it provides
» mutex locks
» condition variables (monitors)
» read-write locks (for long critical sections)
» spin locks
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End of Lecture 5

Questions?
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