Lecture 3: Process and threads

AE4B330SS

Contents

B What is process

B Context Switch

B Processes hierarchy

B Process creation and termination
B Threads

B Threads implementation

B Scheduling

Lecture 3/ Page 2

2014

What is a process?

Textbooks use the terms job and process almost hax
interchangeably stack
Process — a program in execution; process execution
must progress in sequential fashion l

A process includes:
® program counter
® stack 1

® data section. heap

Information associated with each process:

Process state data

Program counter
CPU reqisters

text

CPU scheduling information
Memory-management information

Accounting information

/O status information (“process environment”)

AE4B330SS Lecture 3/ Page 3 2014

C Program Forking Separate Process

int main()
{
Pid t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "ls", NULL);
}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

AE4B330SS Lecture 3/ Page 4 2014

Process Creation lllustrated
Tree of processes

pageout
pid =2
inetd dtlogin

pid = 140 pid = 251
telnetdaemon X_session
pid = pld =294
Csh sdt_shel
pid = 7778 pid = 340

POSIX parent process -

pid = 7785

waiting for its child to &
finish

resumes -

AE4B330SS Lecture 3/ Page 5 2014

Process Termination

B Process executes last statement and asks the operating
system to delete it (exit)
® QOutput data from child to parent (via wait)
® Process’ resources are deallocated by operating system

B Parent may terminate execution of children processes
(abort)
® Child has exceeded allocated resources
® Task assigned to child is no longer required

® [f parent is exiting
» Some operating system do not allow children to continue if the
parent terminates — the problem of ‘zombie’

» All children terminated - cascading termination

AE4B330SS Lecture 3/ Page 6 2014

Process State

B As a process executes, it changes its state
® new: The process is being created
® running: Instructions are being executed
® waiting: The process is waiting for some event to occur
® ready: The process is waiting to be assigned to a CPU
® terminated: The process has finished execution

admitted interrupt terminated

scheduler dispatch

I/O or event completion M

AE4B330SS Lecture 3/ Page 7

I/O or event wait

2014

Context Switch

B When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process

B Context-switch time is overhead; the system does no do
useful work while switching

B Time dependent on hardware support

® Hardware designers try to support routine context-switch
actions like saving/restoring all CPU registers by one pair of
machine instructions

AE4B330SS Lecture 3/ Page 8 2014

Proces A

Proces B

Proces C

Contex
switch

Context switch

-
Process "B"

ended waiting and

process "C"

is preempted|

—

Waiting

Duration of context switch should be sorh
system overheads

AE4B330SS

Lecture 3/ Page 9

2014

CPU Switch From Process to Process

process P, operating system process P,
interrupt or system call Context switch is
lexecuting i / l similar to handling an
T save state into PCB, Interrupt
ridie] Context switch steps:
1.Save current
reload state from PCB, y
/- i process to PCB
2.Decide which
-idle interrupt or system call executingl process to run
l ~——_ 4 3.Reload of new
T rocess from PCB
save state into PCB;) P
~idle | GContext switch should
be fast, because it is
) reload state from PCB, J overhead.
Executing | _\

AE4B330SS Lecture 3/ Page 10 2014

Process Control Block (PCB)

Information associated with each
Process

B Process state

B Program counter

B CPU reqisters

B CPU scheduling information

B Memory-management
information

B Accounting information

B |/O status information (“process
environment”)

AE4B330SS Lecture 3/ Page 11

PIEGESS Sidie

process number

program counter

registers

memory limits

list of open files

2014

Simplified Model of Process Scheduling

: ready queue CEU ”
I/O queue <« |/Orequest [¢—

time slice »

expired

child fork a
@7 child '
interrupt wait for an
occurs interrupt

AE4B330SS Lecture 3/ Page 12 2014

AE4B330SS

Ready Queue and Various I/0O Device Queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header

head

PCB,

tail

head

tail

head

tail

PCB,

registers

PCB;

PCB,,

k A

registers

PCBg

Y

Y

head

tail

PCB;

head

tail

Lecture 3/ Page 13

2014

Single and Multithreaded Processes

B Benefits of Multi-threading
® Responsiveness
® Easy Resource Sharing
® Economy
® Utilization of Multi-processor Architectures

AE4B330SS Lecture 3/ Page 14 2014

Threads

B Advantages

® Create thread is faster than to create process

® Context switch is faster for threads

® Better design of parallel applications with threads
B Examples

® File server in LAN

» Many demands from different users
> For each demand new thread

® Symmetric Multiprocessor (SMP)
» Different thread can use different cores

® Qutput displayed in parallel with data computation
® Parallel algorithm on multi-CPU systems

B More transparent algorithms with threads

AE4B330SS Lecture 3/ Page 15 2014

Data sharing with threads

B Processes and threads

® process: unit that contains resources (memory, open files,
user rights)

® thread: unit for scheduling
® One process can have more threads

Program code: process
Local and working wariables: thread
Global data: process
System resources: process
Stack: | thread
Memory management: process
PC — program counter: thread
CPU register: thread
Scheduling state: thread

User identification and rights: process

AE4B330SS Lecture 3/ Page 16 2014

User threads - Many-to-One Model

B Thread management
done by user-level
threads library

B Three primary thread
libraries:
® POSIX Pthreads
® Win32 threads
® Java threads

B Only old operating
systems without thread
support

AE4B330SS Lecture 3/ Page 17 2014

One-to-one Model

B Supported by the Kernel

B Better scheduling — one waiting thread cannot block other
threads from the same process

B Examples: Windows XP/2000, Solaris, Linux, Tru64
UNIX, Mac OS X

AE4B330SS Lecture 3/ Page 18 2014

Threads in JavaAPI

class CounterThread extends
Thread {

public void run() {

for(int 1 = 0; 1 < 10; i+

+) {

System.out.println(i);
}

Thread counterThread = new
CounterThread();

counterThread.start();

AE4B330SS

Lecture 3/ Page 19

class Counter implements Runnable

{

public void run() {
for(int 1 = 0; 1 < 10; i+

+) {

System.out.println(i);
}

Runnable counter = new Counter():

Thread counterThread = new
Thread(counter);

counterThread.start();

2014

Schedulers

B Long-term scheduler (orjob scheduler) — selects which
processes should be brought into the ready queue

® Long-term scheduler is invoked very infrequently (seconds,
minutes) = (may be slow)

® The long-term scheduler controls the degree of
multiprogramming
B Mid-term scheduler (or tactic scheduler) — selects which
process swap out to free memory or swap in if the memory is free
® Partially belongs to memory manager

B Short-term scheduler (or CPU scheduler) — selects
which process should be executed next and allocates
CPU

® Short-term scheduler is invoked very frequently (milliseconds)
= (must be fast)

AE4B330SS Lecture 3/ Page 20 2014

Process states with swapping

““‘--lllll-llllll......
o* *
o” "‘
N Long-term
] - |
., scheduling »
% \ ‘0‘
‘*., Start “Start _,.*"° Short-term
S ALEETTTI XL Ll scheduling
. Swap out — process
LT RN Needs more memory
guEE QN

Ready
Swapped out

Terminated

Waiting
Swapped out

Mid-term scheduling

AE4B330SS Lecture 3/ Page 21 2014

CPU Scheduler

B Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of
them

B CPU scheduling decisions may take place when a
Process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

B Scheduling under 1 and 4 is nonpreemptive
B 2 and 3 scheduling are preemptive

AE4B330SS Lecture 3/ Page 22 2014

Dispatcher

B Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
Involves:

® switching context

® switching to user mode

® jumping to the proper location in the user program to restart that
program

B Dispatch latency — time it takes for the dispatcher to stop
one process and start another running — overhead

AE4B330SS Lecture 3/ Page 23 2014

AE4B330SS

Scheduling Criteria & Optimization

B CPU utilization — keep the CPU as busy as possible
® Maximize CPU utilization

B Throughput - # of processes that complete their execution per
time unit

® Maximize throughput

B Turnaround time — amount of time to execute a particular
process

® Minimize turnaround time

B Waiting time — amount of time a process has been waiting in
the ready queue

® Minimize waiting time
B Response time — amount of time it takes from when a request

was submitted until the first response is produced, not output
(for time-sharing and interactive environment)

® Minimize response time

Lecture 3/ Page 24 2014

First-Come, First-Served (FCFS) Scheduling

B Most simple nonpreemptive scheduling.
Process Burst Time

P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P,, P,, P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

B Waiting time for P, =0; P, =24; P=27
B Average waiting time: (0 + 24 + 27)/3 =17

AE4B330SS Lecture 3/ Page 25 2014

AE4B330SS

B The Gantt chart for the schedule is:

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P,, P,, P,

P,

P,

0

3

6

B Waiting time for P,=6,P,=0.P,=3

B Average waiting time: (6 + 0 + 3)/3 =3

B Much better than previous case

B Convoy effect short process behind long process

Lecture 3/ Page 26

30

2014

Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time (SRT)

B SJF is optimal — gives minimum average waiting time
for a given set of processes

AE4B330SS Lecture 3/ Page 27 2014

Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time (SRT)

B SJF is optimal — gives minimum average waiting time
for a given set of processes

AE4B330SS Lecture 3/ Page 28 2014

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

B SJF (non-preemptive)

P, P P, P,

B Average waitingtime=(0+6+ 3+ 7)/4 =4

AE4B330SS Lecture 3/ Page 29 2014

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

B SJF (preemptive)

P, | P, |P, | P, P, P,

0 2 4 5 7 11 16

B Average waitingtime=(9+1+ 0 +2)/4 =3

AE4B330SS Lecture 3/ Page 30

2014

End of Lecture 4
GIBBDDIGIBBDDIG IS IIG IS DI

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Stavy procesů v čase – preemptivní případ
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Účel vláken
	Proces a jeho vlákna
	Many-to-One Model
	One-to-one Model
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31

