Operating Systems and Networks
AE4B330SS

RNDr. Petr St&pan, Ph.D

System call

AE4B330SS

Operating Systems and Networks

Examination:

= Lab exercise 10 points
= Test - select correct answer 8 points
= Test -2 more general question about OS 12 points
Result:

= A>=27,B>=24,C>=21, D>=18, E>=15

Web:
http://labe.felk.cvut.cz/courses/AE4B3305S5/2014

Lecture 1/Page 2

2014

AE4B330SS

System Boot

B Operating system must be made available to hardware so
that hardware can start it

® Small piece of code — bootstrap loader, locates the kernel,
loads it from nonvolatile storage into memory, and starts it

® Sometimes two-step or more-steps process where boot
block at fixed location loads bootstrap loader
® When power initialized on system, execution starts at a fixed
memory location
® Machine Firmware used to hold initial boot code
» BIOS in PC’s

® Second-stage boot loader — like GRUB, Lilo, BOOTMGR,
NTLDR. Enable to select different OS from mass storage by
chain loading.

® Chain loading replace currently running program with a new
program.

Lecture 1/Page 3 2014

Virtual Machines

B A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the operating
system kernel as though they were all hardware

B A virtual machine provides an interface identical to the
underlying bare hardware

B The operating system creates the illusion of multiple
processes, each executing on its own processor with its
own (virtual) memory

B The resources of the physical computer are shared to
create the virtual machines

® CPU scheduling can create the appearance that users
have their own processor

® Spooling and a file system can provide virtual card
readers and virtual line printers

® A normal user time-sharing terminal serves as the virtual
machine operator’s console

AE4B330SS Lecture 1/Page 4 2014

VMware Architecture

application application application application
guest operating guest operating guest operating
system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices
virtualization layer
| l
host operating system
(Linux)
hardware
CPU memory I/O devices

AE4B330SS

Lecture 1/Page 5

2014

OS structure

Monolithic Kernel Microkernel
based Operating System based Operating System
Application System Call
//'

Application
IPC

lernel
mode

AE4B330SS Lecture 1/Page 6 2014

AE4B330SS

UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block /O page replacement

character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Lecture 1/Page 7 2014

AE4B330SS

Microkernel System Structure

B Moves as much from the kernel into “user” space

B Communication takes place between user modules using
message passing
B Benefits:
® Easier to extend a microkernel
@® Easier to port the operating system to new architectures

® More reliable (less code is running in kernel mode)
® More secure

B Detriments:

@® Performance overhead of user space to kernel space
communication

Lecture 1/Page 8 2014

Windows NT - XP

Monolithic Kernel Microkernel
based Operating System based Operating System

“ .b.FIFIIiI:miI:In
System

Operating system

Applicatian
IPC Sereer | Driver

l:tITItI l:l!I'I'IEI

mode made

H archs ar= Hardvw are

AE4B330SS Lecture 1/Page 9

"Hybrid kernel"
based Operating System

Application

mode

Harde ar=

2014

Structure of computer

Applications

System programs (utility)

Operating system kernel ~

Hardware

AE4B330SS Lecture 1/Page 10 2014

Operating System structure

Graphical user interface (GUI)

Command-line interface (CLI)

Networking

File system mng.

Storage mng.

I/O mng.

Memory mng.

: IProcess mng.

System

protection

OS kernel

AE4B330SS Lecture 1/Page 11

2014

AE4B330SS

Process Management

A process is a program in execution. It is a unit of work within the system. Program is
a passive entity, process is an active entity.

B Process needs resources to accomplish its task
® CPU, memory, I/O, files
® |nitialization data
B Process termination requires reclaim of any reusable resources

B Single-threaded process has one program counter specifying location of next
instruction to execute

® Process executes instructions sequentially, one at a time, until completion
B Multi-threaded process has one program counter per thread

B Typically system has many processes, some user, some operating system running
concurrently on one or more CPUs

® Concurrency by multiplexing the CPUs among the processes / threads

Lecture 1/Page 12 2014

Process Management Activities

The operating system is responsible for the following activities in connection with process
management:

Creating and deleting both user and system processes
Suspending and resuming processes

Providing mechanisms for process synchronization
Providing mechanisms for process communication

Providing mechanisms for deadlock handling

AE4B330SS Lecture 1/Page 13 2014

Memory Management

B All data in memory before and after processing
M All instructions in memory in order to execute
B Memory management determines what is in memory when
® Optimizing CPU utilization and computer response to users
B Memory management activities
® Keeping track of which parts of memory are currently being used and by whom

® Deciding which processes (or parts thereof) and data to move into and out of
memory

® Allocating and deallocating memory spacey as needed

AE4B330SS Lecture 1/Page 14 2014

Storage Management

B OS provides uniform, logical view of information storage
® Abstracts physical properties to logical storage unit — file
® Each medium is controlled by device (i.e., disk drive, tape drive)

> Varying properties include access speed, capacity, data-transfer rate,
access method (sequential or random)

B File-System management
® Files usually organized into directories
® Access control on most systems to determine who can access what
® OS activities include
» Creating and deleting files and directories
> Primitives to manipulate files and dirs
> Mapping files onto secondary storage
» Backup files onto stable (non-volatile) storage media

AE4B330SS Lecture 1/Page 15 2014

/0 Subsystem

B One purpose of OS is to hide specialities of hardware devices from the user
M /O subsystem responsible for

® Memory management of I/O including buffering (storing data temporarily while it is
being transferred), caching (storing parts of data in faster storage for performance),
spooling (the overlapping of output of one job with input of other jobs)

® General device-driver interface
® Drivers for specific hardware devices

AE4B330SS Lecture 1/Page 16 2014

User Operating System Interface

B CLI allows direct command entry
® Sometimes implemented in kernel, mostly by system programs
® Sometimes multiple flavors implemented — shells
® Primarily fetches a command from user and executes it
» Some commands are built-in, sometimes just names of programs
> If the latter, adding new features doesn’t require shell modification

AE4B330SS Lecture 1/Page 17 2014

User Operating System Interface

B GUI - a user-friendly desktop metaphor interface
® Usually mouse, keyboard, and monitor
® Icons represent files, programs, actions, efc.

® Various mouse buttons over objects in the
interface cause various actions (provide
information, options, execute function, open
directory (known as a folder)

® |Invented at Xerox Alto 1973, followed by
Apple Lisa 1983, X windows (client-
server)1984 and MS Windows 1.0 -1985

B Many systems include both CLI and GUI interfaces
® Microsoft Windows is GUI with CLI “cmd” shell

® Apple Mac OS X as “Aqua” GUI interface with FE"="F
UNIX kernel underneath and shells available E=2=F

® Solaris is CLI with optional GUI interfaces
(Java Desktop, KDE)

=lalols

] £ DD
L{a)(5)(6])(%)

Lisarite Paper Empty Folders 01/01 E H Lﬂ Li) I—E'J lﬁ)
issara] () (2 (3)

w0)

rs
up: never.
s

AE4B330SS Lecture 1/Page 18 2014

How Operating System works?

Graphical user interface (GUI)

Command-line interface (CLI)/

communicate with user?

@ gHow can OS kernel safety

I/0 mng.

. [Networking <
 |File system mng. :
: |Storage mng. System f:
: protection |:

Memory mng.

: [Process mng.

AE4B330SS

OS kernel

Lecture 1/Page 19

Solution:
System calls use
interrupts!

2014

AE4B330SS

OS protection by System services

Transition from User to Kernel Mode and back

user process

user moc_?le
user process executing » calls system call return from system call (mode bit = 1)
\ /
LY F
LY Fi
K | trap return
S mode bit=0 mode bit = 1
kernel mode
(mode bit = 0)

execute system call

"User processes are running in protected mode
"Kernel is running in supervisor mode

Lecture 1/Page 20

2014

System Call Implementation

B Each system call is using the same interrupt number (0x80)

B System calls are distinguished by number associated with
each system call

B The arguments are passed to kernel by registers

B The result values of systems call must be stored in user
space, that was prepared by user program

B Result of system call is returned in register

B The user cannot execute it's own program in kernel

AE4B330SS Lecture 1/Page 21 2014

System Call Implementation

B Each system call is using the same interrupt number (0x80)

B System calls are distinguished by number associated with
each system call

B The arguments are passed to kernel by registers

B The result values of systems call must be stored in user
space, that was prepared by user program

B Result of system call is returned in register

B The user cannot execute it's own program in kernel

AE4B330SS Lecture 1/Page 22 2014

How the System Call Interface is Implemented

X86 System Call Example Hello World on Linux
.section .rodata

greeting:
.string "Hello World\n"
text

_start:
mov $12,%edx /* write(1, "Hello World\n", 12) */
mov $greeting,%ecx
mov $1,%ebx

mov $4,%eax /* write is syscall no. 4 */
int $0x80

xorl %ebx, %ebx /* Set exit status and exit */
mov $0xfc,%eax

int $0x80

hilt /* Just in case... */

AE4B330SS Lecture 1/Page 23 2014

System API Standards

B Direct use of system calls is very complicated (you need to know parameter
assignment, return values, use assembler)

B Three most common API (Application Programming Interface) standards
are
® POSIX API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X)
® Win32 API for Windows

® Java API for the Java virtual machine (JVM)
» out of this course scope

B POSIX (IEEE 1003.1, ISO/IEC 9945)
® Very widely used standard based on (and including) C-language
® Defines both

» system calls and

» compulsory system programs together with their functionality and command-
line format

— E.g.1s -w dir prints the list of files in a directory in a ‘wide’ format
® Complete specification is at
http://www.opengroup.org/onlinepubs/9699919799/nframe.html

B Win32 (Micro$oft Windows based systems)

® Specifies system calls together with many Windows GUI routines

» VERY complex, no really complete specification
AE4B330SS Lecture 1/Page 24 2014

AE4B330SS

POSIX

B Portable Operating System Interface for Unix — IEEE
standard for system interface

B Standardization process began circa 1985 — necessary for
system interoperability

B 1988 POSIX 1 Core services

B 1992 POSIX 2 Shell and utilities

Bl 1993 POSIX 1b Real-time extension
B 1995 POSIX 1c Thread extension

B After 1997 connected with ISO leads to POSIX:2001 and
POSIX:2008

B http://www.opengroup.org/onlinepubs/9699919799

Lecture 1/Page 25 2014

POSIX example

B Standard defines:

® Name - system call name(for example read)
® Synopsis - ssize_t read(int fildes, void *buf, size_t nbyte);
® Description — detailed text description of system call functions

® Return value — define all possible return values, often
describes how to recognize errors

® Errors — define all possible errors of this function

® Examples — sometimes are listed examples how to use this
call |

@® See also - list of systems calls related to described system
call

POSIX definition is available in each UNIX like system by command
man

AE4B330SS Lecture 1/Page 26 2014

POSIX example

NAME
abort - generate an abnormal process abort SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION

[€XI'The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional.
This volume of POSIX.1-2008 defers to the ISO C standard.

The abort() function shall cause abnormal process termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return.

[¢X]'The abnormal termination processing shall include the default actions defined for
SIGABRT and may include an attempt to effect fclose() on all open streams.

The SIGABRT signal shall be sent to the calling process as if by means of raise() with the
argument SIGABRT.

[CX] The status made available to wait(), waitid(), or waitpid() by abort() shall be that of a
process terminated by the SIGABRT signal. The abort() function shall override blocking
or ignoring the SIGABRT signal.

AE4B330SS Lecture 1/Page 27 2014

AE4B330SS

POSIX example

RETURN VALUE

The abort() function shall not return.
ERRORS

No errors are defined.

The following sections are informative.
EXAMPLES

None.

APPLICATION USAGE

Catching the signal is intended to provide the application developer with a portable means to
abort processing, free from possible interference from any implementation-supplied
functions.

RATIONALE

The ISO/IEC 9899:1999 standard requires the abort() function to be async-signal-safe. Since
POSIX.1-2008 defers to the ISO C standard, this required a change to the DESCRIPTION
from "“shall include the effect of fclose()" to “"may include an attempt to effect fclose()."

The revised wording permits some backwards-compatibility and avoids a potential deadlock
situation.

The Open Group Base Resolution bwg2002-003 is applied, removing the following XSI
shaded paragraph from the DESCRIPTION:

Lecture 1/Page 28 2014

AE4B330SS

POSIX example

FUTURE DIRECTIONS

None.

SEE ALSO

exit , kill , raise , signal , wait , waitid

XBD <stdlib.h>

CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 6

Extensions beyond the ISO C standard are marked.

Changes are made to the DESCRIPTION for alignment with the ISO/IEC 9899:1999
standard.

The Open Group Base Resolution bwg2002-003 is applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/10 is applied, changing the
DESCRIPTION of abnormal termination processing and adding to the RATIONALE
section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/9 is applied, changing
““implementation-defined functions" to ~“implementation-supplied functions" in the
APPLICATION USAGE section.

Lecture 1/Page 29 2014

AE4B330SS

Windows API

B Not fully described — hidden system calls, hidden system
functionalities

B MS developers can ask MS for explanation
B Winl6 — 16-bit version for Windows 3.1
B Win32 — 32 bit version started with Windows NT

B Win32 for 64-bit Windows — 64 bit version of Win32, main
changes only in memory pointer types

B For long time, only MS Visual Studio and Borland’s
compilers were the only tools to use for Win API

Lecture 1/Page 30 2014

Example of a System Call through a Standard API

B Consider the ReadFile() function in the Win32 API — a function for reading
from a file

return value

'

BOOL ReadFile (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ; |

function name

B The parameters passed to ReadFile() are
® HANDLE file — the file to be read
® LPVOID huffer — a buffer where the data will be read into and written from

® DWORD bytesToRead — the number of bytes to be read into the buffer
(buffer size)
® LPDWORD bytesRead — the number of bytes read during the last read

® LPOVERLAPPED ovl — indicates if overlapped (non-blocking) /O is to be
used

AE4B330SS Lecture 1/Page 31 2014

Types of POSIX System Calls

A set of (seemingly independent) groups of services:
B Process control and IPC (Inter-Process Communication)

B Memory management
® allocating and freeing memory space on request

B Access to data in files
B File and file-system management
B Device management

B Communications
® Networking and distributed computing support

B Other services
® e.g., profiling
® debugging
@ eftc.

AE4B330SS Lecture 1/Page 32 2014

Process Control Calls (1)

B fork() — create a new process
pid = fork();
® The fork() function shall create a new process. The new process

(child process) shall be an exact copy of the calling process
(parent process) except some process’ system properties

® It returns ‘twice’
» return value == 0 ... child
» return value > 0 ... parent (returned value is the child’s pid)
» return value <O ... error in child creation

B exit() - terminate a process
void exit(int status);

® The exit() function shall then flush all open files with unwritten
buffered data and close all open files. Finally, the process shall
be terminated and system resources owned by the process shall
be freed

@® The value of ‘status’ shall be available to a waiting parent process
® The exit() function should never return

AE4B330SS Lecture 1/Page 33 2014

Process Control Calls (2)

B wait, waitpid — wait for a child process to stop or terminate
pid = wait(int *stat_loc);
pid = walitpid(pid_t pid, int *stat_loc, 1int
options);
® The wait() and waitpid() functions shall suspend the calling process and
obtain status information pertaining to one of the caller's child processes.

Various options permit status information to be obtained for child
processes that have terminated or stopped.

B execl, execle, execlp, execv, execve, execvp — execute a file

int execl(const char *path, const char

*argo, ...);

® The members of the exec family of functions differ in the form and
meaning of the arguments

® The exec family of functions shall replace the current process image with
a new process image. The new image shall be constructed from a
regular, executable file called the new process image file.

® There shall be no return from a successful exec, because the calling

process image is overlaid by the new process image; any return
Indicates a failure

AE4B330SS Lecture 1/Page 34 2014

Memory Management Calls

B System calls of this type are rather obsolete

® Modern virtual memory mechanisms can allocate memory
automatically as needed by applications

@® Important system API calls are:

B malloc() — a memory allocator
void *malloc(size_t size);

® The malloc() function shall allocate unused space for an object
whose size in bytes is specified by size and whose value is
unspecified.

@® |t returns a pointer to the allocated memory space

] free() free a previously allocated memory
void free(void *ptr);

® The free() function shall cause the space pointed to by ptr to be
deallocated; that is, made available for further allocation.

® If the argument does not match a pointer earlier returned by a
malloc() call, or if the space has been deallocated by a call to
free(), the behavior is undefined.

AE4B330SS Lecture 1/Page 35 2014

File Access Calls (1)

B POSIX-based operating systems treat a file in a very general

Serse

® File is an object that can be written to, or read from, or both. A file
has certain attributes, including access permissions and type.

® File types include
» regular file,
» character special file ... a ‘byte oriented device’,
» block special file ... a ‘block oriented device’,
» FIFO special file,
» symbolic link,
» socket, and
» directory.

® To access any file, it must be first o open ned using an open() call that

returns a file descrlntor (fd).

» fd is a non-negative integer used for further STDIN
reference to that particular file STDOUT
» In fact, fd is an index into a process-owned STDERR

table of file descriptors

» Any open() (or other calls returning fd) will
always assign the LOWEST unused entry
in the table of file descriptors

AE4B330SS Lecture 1/Page 36

v vy

NULL

NULL

a |l W IIN |-]|O

2014

File Access Calls (2)

B open - open file
fd = open(const char *path, int
oflag, ...);

® The open() function shall establish the connection between a file
and a file descriptor. The file descriptor is used by other 1/0O
functions to refer to that file. The path argument points to a
pathname naming the file.
® The parameter oflag specifies the open mode:
» ReadOnly, WriteOnly, ReadWrite
» Create, Append, Exclusive, ...

B close - close a file descriptor
err = close(int fd);

® The close() function shall deallocate the file descriptor indicated by
fd. To deallocate means to make the file descriptor available for
return by subsequent calls to open() or other functions that allocate

file descriptors.

® When all file descriptors associated with an open file description
have been closed, the open file description shall be freed.

AE4B330SS Lecture 1/Page 37 2014

File Access Calls (3)

B read - read from a file

b_read = read(int fd, void *buf, 1int nbyte);

® The read() function shall attempt to read nbyte bytes from the file
associated with the open file descriptor, fd, into the buffer pointed to by

buf.
@® The return value shall be a non-negative integer indicating the number of
bytes actually read.
B write — write to a file
b_written = write(int fd, void *buf, int
nbyte); |
® The write() function shall attempt to write nbyte bytes from the buffer

pointed to by buf to the file associated with the open file descriptor fd.

® The return value shall be a non-negative integer indicating the number of
bytes actually written.

AE4B330SS Lecture 1/Page 38 2014

File Access Calls (4)

B Iseek — move the read/write file offset

where = lseek(int fd, off_t offset, 1int
whence) ;

® The Iseek() function shall set the file offset for the open associated
with the file descriptor fd, as follows:

» If whence is SEEK_SET, the file offset shall be set to offset bytes.
» If whence is SEEK_CUR, the file offset shall be set to its current location
plus offset.
» If whence is SEEK_END, the file offset shall be set to the size of the file
plus offset.
® The Iseek() function shall allow the file offset to be set beyond the
end of the existing data in the file creating a gap. Subsequent
reads of data in the gap shall return bytes with the value O until
some data is actually written into the gap (implements sparse file).
@® Upon successful completion, the resulting offset, as measured in
bytes from the beginning of the file, shall be returned.
@® An interesting use is:
where = lseek(int fd, 0, SEEK_CUR);

returns the “current position” in the file.

AE4B330SS Lecture 1/Page 39 2014

File Access Calls (5)

] dup — duplicate an open file descriptor
fd_new = dup(int fd);

® The dup() function shall duplicate the descriptor to the open
fileassociated with the file descriptor fd.

® As for open(), the LOWEST unused file descriptor should be
returned.

® Upon successful completion a non-negative integer, namely the file
descriptor, shall be returned; otherwise, -1 shall be returned to
Indicate the error.

B stat — get file status
err = stat(const char path, struct stat
*buf);

@® The stat() function shall obtain information about the named file
and write it to the area pointed to by the buf argument. The path
argument points to a pathname naming a file. The file need not be
open.

® The stat structure contains a number of important items like:

» device where the file is, file size, ownership, access rights, file time

StapmS, etc.
AE4B330SS Lecture 1/Page 40 2014

File Access Calls (6)

B chmod - change mode of a file
err = chmod(const char *path, mode_t mode);

® The chmod() function shall the file permission of the file named by
the path argument to the in the mode argument. The application
shall ensure that the effective privileges in order to do this.

B pipe — create an interprocess communication channel
err = pipe(int fd[2]);
® The pipe() function shall create a pipe and place two file
descriptors, one each into the arguments fd[0] and fd[1], that
refer to the open file descriptors for the read and write ends of the
pipe. Their integer values shall be the two lowest available at the
time of the pipe() call.

® A read on the file descriptor fd[0] shall access data written to the
file descriptor fd[1] on a first-in-first-out basis.

® The details and utilization of this call will be explained later.

AE4B330SS Lecture 1/Page 41 2014

File & Directory Management Calls (1)

B mkdir — make a directory relative to directory file descriptor
err = mkdir(const char *path, mode_t mode);

® The mkdir() function shall create a new directory with name path.
The new directory access rights shall be initialized from mode.
B rmdir - remove a directory
err = rmdir(const char *path);

® The rmdir() function shall remove a directory whose name is given
by path. The directory shall be removed only if it is an empty

directory.
B chdir - change working directory |
err = chdir(const char *path);

@® The chdir() function shall cause the directory named by the
pathname pointed to by the path argument to become the current
working directory. Working directory is the starting point for path

searches for relative pathnames.

AE4B330SS Lecture 1/Page 42 2014

File & Directory Management Calls (2)

B link — link one file to another file

err = 1nt link(const char *pathl, const
char *path2);

® The link() function shall create a new link (directory entry) for the
existing file identified by pathl.

B unlink - remove a directory entry
err = unlink(const char *path);
® The unlink() function shall remove a link to a file.

® When the file's link count becomes 0 and no process has the file
open, the space occupied by the file shall be freed and the file
shall no longer be accessible. If one or more processes have the
file open when the last link is removed, the link shall be removed
before unlink() returns, but the removal of the file contents shall be

postponed until all references to the file are closed.

AE4B330SS Lecture 1/Page 43 2014

Device Management Calls

B System calls to manage devices are hidden into ‘file calls’

® POSIX-based operating systems do not make difference between
traditional files and ‘devices’. Devices are treated as ‘special files’

@® Access to ‘devices’ is mediated by opening the ‘special file’ and
accessing it through the device.

® Special files are usually ‘referenced’ from the /dev directory.

B ioctl - control a device
int ioctl(int fd, int request, ... /* arg */),;
® The joctl() function shall perform a variety of control functions on
devices. The request argument and an optional third argument
(with varying type) shall be passed to and interpreted by the
appropriate part of the associated with fd.

AE4B330SS Lecture 1/Page 44 2014

Other Calls

B kill — send a signal to a process or a group of processes
err = kill(pid_t pid, int sig);
® The kill() function shall send a signal to a process specified by
pid. The signal to be sent is specified by sig.
® kill() is an elementary inter-process communication means

® The caller has to has to have sufficient privileges to send the signal
to the target.

B signal - a signal management
void (*signal(int sig, void (*func)(int)))(int);
® The signal() function chooses one of three ways in which receipt of
the signal sig is to be subsequently handled.

» If the value of func is SIG_DFL, default handling for that signal shall
occur.

» If the value of func is SIG_IGN, the signal shall be ignored.

» Otherwise, the application shall ensure that func points to a function to
be called when that signal occurs. An invocation of such a function is
called a "signal handler".

AE4B330SS Lecture 1/Page 45 2014

POSIX and Win32 Calls Comparison

B Only several important calls are shown

POSIX
fork
wait
execve
exit
open
close
read
write
Iseek
stat
mkdir
rmdir
link
unlink

chdir

AE4B330SS

Win32
CreateProcess
WaitForSingleObject
ExitProcess
CreateFile
CloseHandle
ReadFile
WriteFile
SetFilePointer
GetFileAttributesExt
CreateDirectory

RemoveDirectory

DeleteFile

SetCurrentDirectory

Description
Create a new process
The parent process may wait for the child to finish
CreateProcess = fork + execve
Terminate process
Create a new file or open an existing file
Close a file
Read data from an open file
Write data into an open file
Move read/write offset in a file (file pointer)
Get information on a file
Create a file directory
Remove a file directory
Win32 does not support “links” in the file system
Delete an existing file

Change working directory

Lecture 1/Page 46 2014

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46

