
2. tutorial in Prolog

April 12, 2016

1 Prolog as a database

Task 1: Load the database of the British royal family from the last
tutorial into Prolog. If you’ve lost it, it is provided at the end of this
document.

Task 2: Compare 4 implementations of ancestor(Anc,Desc), which
should connect parents with children, grandparents with grandchildren,
grand-grandchildren with grand-grand-children, etc.

ancestor1(A,D) :- parent(A,D).
ancestor1(A,D) :- parent(A,B), ancestor1(B,D).

ancestor2(A,D) :- parent(A,D).
ancestor2(A,D) :- ancestor2(B,D), parent(A,B).

ancestor3(A,D) :- parent(A,B), ancestor3(B,D).
ancestor3(A,D) :- parent(A,D).

ancestor4(A,D) :- ancestor4(B,D), parent(A,B).
ancestor4(A,D) :- parent(A,D).

1



First without your computer, guess which implementation matches the
behavior. Please, please, please, verify your answers on a computer after
you made your guess.

a. Works exactly as expected.

b. Ends up in an (almost) infinite loop immediately.

c. Works as expected, but finds grand-parents and grand-children be-
fore parents and children.

d. Works as expected, but after the last response, Prolog ends up in an
infinite loop.

Check your knowledge:

• What causes the infinite looping in the “bad” implementations?

• Would it help if left-to-right rule was changed to right-to-left rule?

• Or if the top-to-bottom rule was bottom-to-top rule?

Task 2: Match terms in various forms with their usual meaning.

Syntactic sugar Usual meaning Hacker’s syntax

[]
list with

’.’(X,Y)1 item

[X,Y]
empty

’.’(harry,[])list

[harry]
list with

[]2 items

[X|Y]
list with at

’.’(X,’.’(Y,[]))least 1 item

Lesson learned: A list in Prolog has the same structure as in Scheme.
Empty list is [], whereas in Scheme there is nil. And instead of cons,
Prolog has the dot ’.’. In case of doubt, go back to the hacker’s syntax
(it’s more instructive). In Prolog use the syntactic sugar (it’s shorter).

2



Task 3: Define basic predicates which work with lists:

• empty_list(X) succeeds whenever X is an empty list.

• list_of_size_one(X) succeeds iff X, whose size is exactly 1.

• any_list(X) succeeds iff X is any list. Hence any_list(harry)
must fail, but any_list([harry]) succeeds.

• my_member(X, List) succeeds iff X is inside the List. my_member(b,
[a,b,c])must succeed and my_member(d, [a,b,c])must fail. If
you did your implementation correctly, my_member(X, [a,b,c])
should give you all 3 correct answers: X=a; X=b; X=c.

Task 4: Extend the (correct) implementation of ancestor so that
in the 3rd argument, you get a list of people that are “between” the
Ancestor and Descendant.
?- ancestor(diana, william, X).
X = [].

?- ancestor(elizabeth, william, X).
X = [charles].

See the beauty of Prolog! Ask for all grandgrandparents:
?- ancestor(GrandGrandParent,Person,[GrandParent,Parent]).

Task 6: Define the my_append(A, B, AB) predicate. It appends list
B to the end of list A and gives the result in the third argument AB.

?- my_append([a,b,c], [d,e], L).
L = [a,b,c,d,e].

If you did your job correctly, my_append(L1, L2, [a, b, c]) will re-
ward you with a surprising answer!

3



Lost? See the hacker’s syntax of lists [a,b,c] and [d,e]:

’.’(a, ’.’(b, ’.’(c, []))) and ’.’(d, ’.’(e, []))

Look carefully. Now, the secret to append is:�
�

�


If you remove [] in the first list and put
the second list instead, you are done!

a

b

c []

’.’

’.’

’.’

d

e []

’.’

’.’

The append should recurse on the first argument, strip one item after
another until it reaches an empty list. While exiting the stack trace,
the items are added back, one at a time.

Still lost? What is the result of appending anything to an empty list?
Start from append([],X,?)...

Task 7: The main procedure behind Prolog is called unification. You’ve
used it every time Prolog replaced a variable by a value (try ?- X=a),
but it’s much more powerful. For example [X,Y] = [a,b] will “extract”
values from inside the list.
The somewhat informal definition of unification is:�

�
�


Two terms unify if they can be made equal
only by substituting variables.

4



For each of these terms, put a tick 2� if they will unify or leave � if they
don’t. If they unify, write down the substitution.

� plus(X,Y) = plus(Z,4)

� ’.’(first,’.’(second,[])) = ’.’(A,’.’(B,[]))

� ’.’(first,’.’(second,[])) = ’.’(A,B)

� ’.’(first,[]) = ’.’(A,’.’(B,[]))

� ’.’(X,’.’(Y,[])) = ’.’(Y,’.’(element,[])

� X = f(X)

� unify_with_occurs_check(X,f(X))

Task 8: Define my_reverse(List, Reversed) that reverses elements
in a list
?- my_reverse([1,2,3,4,5], L).
L = [5,4,3,2,1].

Don’t know how to start? Use append(List, [X], ListX) to add
an element at the end of a list.

Task 9 (optional): Use an accumulator to reduce the runtime of
my_reverse from O(n2) to O(n).

5



Task 10 (optional): Extend the my_member predicate into the select
predicate, which gives the “rest” of the list:

?- my_select(Elem, [a,b,c], Rest).
Elem = a,
Rest = [b, c] ;
Elem = b,
Rest = [a, c] ;
Elem = c,
Rest = [a, b] ;
false.

Task 11 (optional): Define the descendant and carefully observe
the difference from ancestor2 and ancestor3 predicates in task 2.

Task 12 (optional): Rewrite the ancestor predicate so that the Ancestor
and Descendant are included in the list:
?- ancestor(X,Y,Z).
X = charles,
Y = harry,
Z = [charles, harry] ;
X = charles,
Y = william,
Z = [charles, william] ;
...

Task 13 (optional): Flatten a nested list.

?- my_flatten([[a,b],[],[c,[d,e],[f]]],X).
X = [a, b, c, d, e, f] ; ...

It’s enough to return additional (incorrect) answers. We’ll learn how to
remove them next week.

6



female(camilla).
female(diana).
female(elizabeth).
female(louise).
female(sophie).

male(charles).
male(edward).
male(george).
male(harry).
male(james).
male(philip).
male(william).

parent(charles,harry).
parent(charles,william).
parent(diana,harry).
parent(diana,william).
parent(edward,james).
parent(edward,louise).
parent(elizabeth,charles).
parent(elizabeth,edward).
parent(george,elizabeth).
parent(philip,charles).
parent(philip,edward).
parent(sophie,james).
parent(sophie,louise).

wife(camilla,charles).
wife(diana,charles).
wife(elizabeth,philip).
wife(sophie,edward).

7


