
Functional and
Logic programming

Tutorial 3: Tail-recursion, Cut and 
effective programming



Task 1: Factorial

●5! = 5 × 4 × 3 × 2 × 1
●Define factorial(N,F)

such that F = N!
●X = 1 + 1 means unification,

not computation.
● Instead you want to use

X is 1 + 1.
●Variables must be instantiated,

hence X is Y + Z fails.



Task 2: Let's make factorial faster

●You can evaluate performance using
time(factorial(10000,_)).

●Not impressive? Use tail-recursion.

● Let's make factorial2(N,‧), which calls factorial2
(N-1,‧) as the last subgoal of its definition.



CUT
GOTO of logic programming

!



What does ! do?
1) Cuts off clauses below
q(b).
q(c).

p(a).
p(X) :- q(X), !.
p(d).

Give me the answers for:
?- p(X).
?- p(a).
?- p(b).
?- p(c).
?- p(d).



What does ! do?

2) Cut of search tree in front of "!"

● Study the code to see this effect.



Cut the search space

●Take your assignment 1 and modify the 
definition of father(X,Y).

● If the father of X is found to be Y, it is no 
longer needed to search for other 
possibilities (no one has 2 fathers).

●Call trace. and see the length of the 
derivation.



Cut the search space

●Make two definitions of max(X,Y,Z)
Z is the maximum of {X,Y}.

1.With "!"
2.Without "!"

●Which is simpler? More effective?



Declaring your own X \= Y

● In the assignment you have already encountered
X \= Y which fails if X and Y can be unified.

●Now try defining your own diff(X,Y).

●You may need fail/0 which always fails.



Declaring your own "not"

● In the assignment you have already 
encountered not(‧).

●Now try defining your own my_not(Goal) 
which succeeds only if the Goal fails.

●You may need two predicates:
○ call(Goal) executes Goal
○ fail always fails


