1.  Find longest increasing subsequence of the given sequence. Use the DP method, construct the DP table of the subsequence lengths and the table of predecessors. 

a)   5   8  11  13   9   4   1   2   0   3   7  10  12   6 
b)   6   7   5  15  10   9  11  18  19   8  12   1   3   4  13  14   0  17   2  16 
Solution   [subsequences:  a) 1,2,3,7,10,12   b)  6, 7, 9, 11, 12, 13, 14, 17/16  ]  

2.  Modify the DP method of finding the longest increasing subsequence to find
a) longest decreasing subsequence
b) longest non-increasing subsequence
c) longest constant subsequence
d) longest alternating subsequence
In case c) also try to find method assymptotically faster than the DP approach.
In case d), alternating subsequence  a[1], a[2], ..., a[n]  satisfies 
(a[k]  a[k1])* (a[k+1]  a[k]) < 0, for k = 2, 3, ..., n1. 
Solution  a)  The problem is identical to the original one, for example you can multiply all elements by 1.
 b) The problem is identical to the original one, only the inequality which compares the elements is changed from the strict one to the one which is not strict.  
c) Same as b), substitute the inequality by equality. Non-DP approch may consist of sorting the sequence
which can be done in  O(n*log(n)) time (sometimes even in (n) time) and then finding the longest segment of constant values in one pass in time  (n). Alternatively, a hash map may be utilized to store and update the number of occurences of each element  in the sequence and the problem my be then solved in one pass in expected  time (n).
d) During the search, register two longest subsequences found so far: The one which ends with a decreasing pair of elements a[x]  > a[y] for some indices x < y and the one which ends with a decreasing pair of elements a[t] < a[w] for some indices t < w. In the current step k try to extend the first subsequence if a[k] > a[w] or try to extend the second subsequence if a[k] < a[y]. Nonetheless, there is a very simple and more effective approach which does not depend on DP and which solves the task in one pass and which you are encouraged to find yourself.   
 
[bookmark: _GoBack]3. In how many ways can the be the matric product parenthesized? (Different parenthesizations result in different progress of the product calculation. Parenthesization (X) and ((X)) are identical in this problem.)
a)   A  B  C  D 
b)   A  B  C  D  E 
Solution  [5 a 14]

4.  Let A and B be real matrices,  A  Rrs a B  Rst.  Supose we need exactly r∙s∙t operations to compute the product  A  B. Determine how many operations must be performed to compute the product  (A  B)  C and how many to compute the product A  (B  C) when: 
a)  A  R23 ,  B  R35 , C  R54
b)  A  R34 ,  B  R45 , C  R52
c)  A  Rn4 ,  B  R42n , C  R2n3
Solution  [a)  70 a 84  b)    90 a 64  c)  14n2 a 36n ] 

 
5. For which values of n  is it more efficient to compute the product (A  B)  C then the product A  (B  C)?
a)  A  Rn2 ,  B  R23 , C  R34
b)  A  R5n ,  B  Rn4 , C  R4n
c)  A  Rnn ,  B  Rn100 , C  R100n
Solution  [a)  18n < 8n+24, n < 3  b)    40n < 9n2,  4 < n     c)   200n2 <  n3+100n2, 100 < n ] 


6. The  dimensions of matrices  A, B, C, D, E, are (in this order)  2  5,  5  3,  3  6,  6  2,  2  4. 
Apply the DP method to determine parenthesization of the product A  B  C  D  E  which minimizes the number of multiplications in the process of calculating the final product. What is the minimum number of operations?
 Solution  
((A  B)  (C  D))  E 
Number of operations: 94.
DP tables:
Operations count:
    0    30    66    78    94 
    0     0    90    66   106 
    0     0     0    36    60 
    0     0     0     0    48 
    0     0     0     0     0 
reconstruction table
    0     A     B     B     D 
    0     0     B     B     D 
    0     0     0     C     D
    0     0     0     0     D 
    0     0     0     0     0 


7. We do some HW/SW benchmarks and we want to multiply matrices A, B, C, D, E in the previous problem in such way that the number of multiplications is maximized.
In which way can you modify the Matrix chain multiplication algorithm to sove this problem?
Solution  The structure of the problem is identical, the only difference is that when building the DP table we should choose the maximum instead of the minimum values.]

8.  Modify the idea of solution of the chain matrix multiplication probem to solve a more simple problem:
In how many different ways can be the product of n terms be parenthesized?  Will you need a 2D or a 1D table? Verify the solution with a few small values of n, the result should be equal to  , which is the  (n1)-th Catalan number defined as    for positive integer n. 
Solution   Use 1D table T with the recursive rule  
T[n] = T[1]*T[n1] + T[2]*T[n2]+  ... + T[n2]*T[2] + T[n1]*T[1].  
The recursive rule is often cited together with the Catalan numbers definition.


9.   Optimal binary search tree 
a) maximizes the depth of the tree
b) maximizes costs of the nodes
c) maximizes number of leaves 
d) minimizes the time of search operation
e)  minimizes length of the path from the root to any leaf
Solution   d).

10.  There are n keys and with each key is associated the probability that this key will be queried. The complexity of  construction  of the optimal BST  using the given keys is  
 O(log(n))
a) (n)
b) O(n·log(n))
c) (n2)
d) (2n)
Solution   d).

11a. The probablility of a particular key to be queried is written at the particular node associated with the key in the picture. Suppose that only the keys which are present in the tree are queried in long time run. The average number of the nodes visited during one single query is then  
a) 0.5
b) [image: ]1.0
c) 1.25
d) 1.5
e) 1.75

Solution   d).

11b.  The probablility of a particular key to be queried is written at the particular node associated with the key in the picture. Suppose that only the keys which are present in the tree are queried in long time run. The average number of the nodes visited during one single query is then  
[image: ]
a) 0.2
b) 1.0
c) 2.15
d) 2.2
e) 2.5
Solution   d).

12.  There are two binary search trees containing the same keys. The probablility of a particular key to be queried is listed in the table bellow. Find out which of the trees is more search effective, that is, in which of the trees the long term average cost of operation FIND is smaller. The cost of the operation is equal to the number of nodes visited during that operation. (We suppose that the tree contents and shape do not change over time.)


[image: ][image: ]A: 0.10
B: 0.20
C: 0.25
D: 0.05
E: 0.10
F: 0.25
G: 0.05






Solution   The cost of each node is multiplied by its depth (the depth of the root is 1 in this case)
and the results are added in each tree separately:
Left tree:  4*0.1 + 3*0.20 + 4*0.25 + 2*0.05 + 3*0.10 + 1*0.25 + 2*0.05 = 2.75 
Right tree: 2*0.1 + 1*0.20 + 4*0.25 + 3*0.05 + 4*0.10 + 2*0.25 + 3*0.05 = 2.60 
The right tree is more search effective.

13.  Determine the shape of the optimal BST, constructed for the given 7 keys and their corresponding relative query frequencies: 
a)   E  0.04      F  0.05     G  0.22     H  0.04     I  0.06     J  0.05   K  0.15
b)   A   0.10     B  0.10     C  0.25     D  0.35    E  0.10    F  0.05    G  0.05

Solution   a)

    0 0.04 0.13 0.44 0.52 0.68 0.83 1.28
    0    0 0.05 0.32 0.40 0.56 0.71 1.16
    0    0    0 0.22 0.30 0.46 0.61 1.06
    0    0    0    0 0.04 0.14 0.24 0.54
    0    0    0    0    0 0.06 0.16 0.42
    0    0    0    0    0    0 0.05 0.25
    0    0    0    0    0    0    0 0.15
    0    0    0    0    0    0    0    0
[image: ]
      5-E 6-F 7-G 8-H 9-I 10-J 11-K 
   0   5   6   7   7   7   7   7
   0   0   6   7   7   7   7   7
   0   0   0   7   7   7   7   7
   0   0   0   0   8   9   9  11
   0   0   0   0   0   9   9  11
   0   0   0   0   0   0  10  11
   0   0   0   0   0   0   0  11
   0   0   0   0   0   0   0   0







Solution   b)
	
	
	A
	B
	C
	D
	E
	F
	G
	
	
	
	A
	B
	C
	D
	E
	F
	G

	 A
	0
	0.1
	0.3
	0.75
	1.45
	1.75
	1.9
	2.1
	
	A
	-
	A
	AB
	C
	C
	CD
	D
	D

	B
	0
	0
	0.1
	0.45
	1.15
	2.03
	1.5
	1.7
	
	B
	-
	-
	B
	C
	CD
	D
	D
	D

	C
	0
	0
	
	0.25
	0.85
	1.05
	1.2
	1.4
	
	C
	-
	-
	
	C
	D
	D
	D
	D

	D
	0
	0
	
	
	0.35
	0.55
	0.7
	0.9
	
	D
	-
	-
	
	
	D
	D
	D
	D

	E
	0
	0
	
	
	
	0.1
	0.2
	0.35
	
	E
	-
	-
	
	
	
	E
	E
	EFG

	F
	0
	0
	
	
	
	
	0.05
	0.15
	
	F
	-
	-
	
	
	
	
	F
	FG

	G
	0
	0
	0
	
	
	
	
	0.05
	
	G
	-
	-
	
	
	
	
	
	G


The values in yellow cells may be obtained in more than one way, therefore the shape of the tree may vary.
D
F
B
C
A
E
G

Example: Table value of the subtree BCD in the cell  t[B,D] is computed:
0.1+0.25+0.35 + min(0+0.85, 0.1+0.35, 0.45+0)  = 0.7 + min( 0.85,  0.45,  0.45) = 1.15

One of the possible tree shapes is shown in the picture:






	29
	10
	11
	23
	22
	23

	27
	25
	29
	12
	29
	24

	18
	21
	11
	27
	14
	24

	30
	17
	26
	29
	23
	22

	12
	25
	23
	13
	28
	16

	20
	24
	10
	14
	30
	15


14.   We start anywhere in the first column of the given matrix and the we proceed step by step each time by one column in any of the N, NE and E direction. The journey stops in the last column. The cost of the journey is the sum of the values in all visited cells during the journey. What is the minimum possible cost?


Solution   The path goes through the cells with values 12 - 17 - 11 - 12 - 14 - 22, total minimum cost is  88.



15. We travel through the matrix according to the same rules. The cost of one step this time is the absolute values of  the difference of the current and the previous visited cell. The problem remains the same: Find the cheapest journey.

Solution   The path goes through the cells with values  27 - 25 - 29 - 23 - 22 - 23, total minimum cost is 14.


16.  Both two given strings are of length  n. Longest common subsequence of the strings can be found in time 

a) (log(n))
b) (n)
c) (n·log(n))
d) (n2)
e) (n3)

Solution   d).

17.  Find the longest common subsequence of the pairs of strings: 

a)
A: 11101001000
B: 00010010111  (B = A backwards)
b)
A: 1100110011001100
B: 1010101010101010
c)
A: 110100100010000100001000001
B: 001011011101111011110111110  (B = complement of  A)

Solution   
a)  0001000

b) All 70 solutions in lexicographical order:
100100100100
100100100110
100100101100
100100110010
100100110100
100100110110
100101001100
100101100100
100101100110
100101101100
100110010010
100110010100
100110010110
100110011010
100110100100
100110100110
100110101100
100110110010
100110110100
100110110110
101001001100
101001100100
101001100110
101001101100
101011001100
101100100100
101100100110
101100101100
101100110010
101100110100
101100110110
101101001100
101101100100
101101100110
101101101100
110010010010
110010010100
110010010110
110010011010
110010100100
110010100110
110010101100
110010110010
110010110100
110010110110
110011001010
110011010010
110011010100
110011010110
110011011010
110100100100
110100100110
110100101100
110100110010
110100110100
110100110110
110101001100
110101100100
110101100110
110101101100
110110010010
110110010100
110110010110
110110011010
110110100100
110110100110
110110101100
110110110010
110110110100
110110110110

c)   110100101110 is one of the possibilities, others (if they exist) remain unknown to this day.
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