
A(E)3M33UI — Semestral project 1:
Spam filter

Petr Pošík

April 1, 2014

1 Introduction

The goal of this semestral task is to employ the knowledge of the lectures and previous
exercises, and apply it to a text classification task, namely spam filtering. Your task is
to create as good spam filter as possible, and describe its principle in a report.

You shall submit the Python scripts which demonstrate what you have achieved,
and a report describing the methods and results. Remember to submit your own work!
Do not commit plagiarism! The plagiarism detection feature will be on for this task, and any
confirmed plagiat may be a reason to assign 0 points from this task, i.e. you will not receive the
assessment! This warning applies to both the PDF reports and Python scripts.

You can look at an example of text processing using scikit-learn.

1.1 Code

Your code shall be clean, readable, and understandable. This will form one criterion of
the evaluation. Please, take the time to come up with meaningful names of variables,
functions, constants, etc. Keep the functions short, spanning several lines only.

1.2 Report

The report can be elaborated in Czech or in English. It shall have a form of a scientific
article. It shall contain an adequate description of the data, principles, methods and
results used and achieved by your work. By adequate description we mean a concise
description sufficient to understand and replicate the work done by you. You should
not only present the results, but also try to interpret them.

2 Spam filter: mandatory part

The only mandatory part of this task is to create a spam filtering algorithm, describe it
in the report, and submit it for the contests.

1

https://cw.felk.cvut.cz/wiki/help/common/plagiarism_cheating
http://nbviewer.ipython.org/github/ogrisel/parallel_ml_tutorial/blob/master/notebooks/04%20-%20Text%20Feature%20Extraction%20for%20Classification%20and%20Clustering.ipynb?create=1


2.1 Specifications

In module filter.py, implement functions train_filter() and predict().

1. train_filter(X,y) shall take the training data (email texts X, and email class y),
shall train the classifier (or a pipeline with preprocessors and a classifier), and
shall return the trained classifier (or the pipeline).

2. predict(filter,X) shall take the filter (classifier, pipeline) and the email texts X,
and shall return the predictions of the filter for this data.

During contests, these two function will then be imported from your filter.py

module and used for the comparison.

2.2 Working example

In the supplement module filter.py you obtain with this assignment, you can see an
example implementantion of a dummy spam filter:

1. The filter first transforms the training emails into the bag of words representation,
using the CountVectorizer class.

2. Then it uses the DummyClassifier to decide if an email as ham or spam.

3 Filter evaluation

The filters shall be evaluated using a modified accuracy score:

macc =
nTP + nTN

nTP + nTN + 10nFP + nFN
(1)

It is already implemented in the supplied filter.py. It uses the confusion matrix
feature to compute TP, FP, TN, FN.

You may also need other information how to construct own scoring function and
use it e.g. in grid search.

4 Model tuning

Use grid search feature to search for optimal settings of each filter.

5 Comparison of the filters

Compare several types of (preferably tuned) filters using

• ROC curves, and/or

• learning curves.

You can then choose the best one as the final filter to submit.

2

http://en.wikipedia.org/wiki/Bag-of-words_model
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html#sklearn.metrics.confusion_matrix
http://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules


6 Additional ideas

• Try to modify the tokenization process of the CountVectorizer.

def my_analyzer(s):
return s.split()

vec = CountVectorizer(analyzer=my_analyzer)

• Try to choose only a subset of words as features (feature selection).

7 Scoring

The final score for the task will be composed of the following components:

Component Points

Report in LATEX 0-1
Adequate description of the final chosen filter in the report 2
Contest on dataset A 0-4
Contest on dataset B 0-4
Filter tuning via grid search + adequate description in the report 0-4
Filter comparison + adequate description in the report 0-4
Additional ideas tried + adequate description in the report 0-2+

Total 0-20+

It is theoretically possible to get the required 10 points by just sumbitting the filter
and its short (but adequate description, see sec. 1.2) given that the filter will rank in the
top 20 % of filters in both contests (see sec. 7.1). Using this strategy, however, you may
also end up with less than 2 points.

It is thus strongly recommended to try also the other suggested ways (filter tun-
ing, filter comparison, additional ideas) how to improve your filter score, and describe
them adequately in the report. This way, you will

1. build a better filter which will score higher in the contests (thus bringing you
more points from the contests), and

2. have the chance to get additional points for this additional effort.

7.1 Contests scoring

In each contest, the filters will be sorted according the modified accuracy (Eq. 1). The
first 20 % of filters will get 4 points, the second 20 % of filters will get 3 points, . . . , and
the last 20 % of filters will get 0 points.

8 Have fun!

3

http://scikit-learn.org/stable/modules/feature_selection.html

	Introduction
	Code
	Report

	Spam filter: mandatory part
	Specifications
	Working example

	Filter evaluation
	Model tuning
	Comparison of the filters
	Additional ideas
	Scoring
	Contests scoring

	Have fun!

