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Optimal separating hyperplane. Basis expansion.

Kernel trick. Support vector machine.

Petr Pošı́k
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Binary classification of objects x (classification into 2 classes, dichotomy):

■ For 2 classes, 1 discrimination function is enough.

■ Decision rule:

f (x(i)) > 0 ⇐⇒ ŷ(i) = +1

f (x(i)) < 0 ⇐⇒ ŷ(i) = −1

}
i.e. ŷ(i) = sign

(
f (x

(i))
)

Learning of the linear discrimination function by the perceptron algorithm:

■ Optimization of

J(w, T) =
|T|

∑
i=1

I

(
y(i) 6= ŷ(i)

)

■ The weight vector is a weighted sum

of the training points x(i).

■ Perceptron finds any separating
hyperplane, if exists.

■ Among the infinite number of
separating hyperplanes, which one is
the best?
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Margin (cz:odstup):

■ “The width of the band in which the decision
boundary can move (in the direction of its
normal vector) without touching any data
point.”

Maximum margin linear classifier

xwT + w0 = 1
xwT + w0 = 0

xwT + w0 = −1

Plus 1 level: {x : xwT + w0 = 1}
Minus 1 level: {x : xwT + w0 = −1}
Decision boundary: {x : xwT + w0 = 0}

Support vectors:

■ Data points x lying at the plus 1 level or
minus 1 level.

■ Only these points influence the decision
boundary!

Why we would like to maximize the margin?

■ Intuitively, it is safe.

■ If we make a small error in estimating the
boundary, the classification will likely stay
correct.

■ The model is invariant with respect to the
training set changes, except the changes of
support vectors.

■ There are sound theoretical results (based on
VC dimension) that having a maximum
margin classifier is good.

■ Maximal margin works well in practice.
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How to compute the margin M given w = (w1, . . . , wD), w0?

■ Let’s choose two points x+ and
x−, lying in the plus 1 level and
minus 1 level, respectively.

■ Let’s compute the margin M as
their distance.

xwT + w0 = 1

xwT + w0 = 0

xwT + w0 = −1
w

x+

x−

M

We know that:

x
+

w
T + w0 = 1

x
−

w
T + w0 = −1

x
− + λw = x

+

And we can derive:

(x
+ − x

−)wT = 2

(x
− + λw − x

−)wT = 2

λww
T = 2

λ =
2

wwT
=

2

‖w‖2

Thus the margin size is

M = ‖x
+ − x

−‖ = ‖λw‖ = λ‖w‖ =
2

‖w‖2
‖w‖ =

2

‖w‖
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize ww
T with respect to w1, . . . , wD

subject to y(i)(x
(i)

w
T + w0) ≥ 1.
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize ww
T with respect to w1, . . . , wD

subject to y(i)(x
(i)

w
T + w0) ≥ 1.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

with respect to α1, . . . , α|T|

subject to αi ≥ 0

and
|T|

∑
i=1

αiy
(i) = 0.
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize ww
T with respect to w1, . . . , wD

subject to y(i)(x
(i)

w
T + w0) ≥ 1.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

with respect to α1, . . . , α|T|

subject to αi ≥ 0

and
|T|

∑
i=1

αiy
(i) = 0.

■ From the solution of the dual task, we can compute the solution of the primal task:

w =
|T|

∑
i=1

αiy
(i)

x
(i), w0 = y(k) − x

(k)
w

T ,

where (x(k), y(k)) is any support vector, i.e. αk > 0.
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The importance of dual formulation:

■ The QP task in dual formulation is easier to solve for QP solvers than the primal
formulation.

■ New, unseen examples can be classified using function

f (x, w, w0) = sign(xw
T + w0) = sign

(
|T|

∑
i=1

αiy
(i)

x
(i)

x
T + w0

)
,

i.e. the discrimination function contains the examples x only in the form of dot
products (which will be useful later).

■ The examples with αi > 0 are support vectors, thus the sums may be carried out only
over the support vectors.

■ The dual formulation allows for other tricks which you will learn later.

What if the data are not linearly separable?

■ There is a generalization of the QP task formulation for this case (soft margin).

■ The primal task has double the number of constraints, the task is more complex.

■ The results for the QP task with soft margin are of the same type as before.
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a.k.a. feature space straightening.
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a.k.a. feature space straightening.

Why?

■ Linear decision boundary (or linear regression model) may not be flexible enough to
perform precise classification (regression).

■ The algorithms for fitting linear models can be used to fit non-linear models!
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a.k.a. feature space straightening.

Why?

■ Linear decision boundary (or linear regression model) may not be flexible enough to
perform precise classification (regression).

■ The algorithms for fitting linear models can be used to fit non-linear models!

How?

■ Let’s define a new multidimensional image space F.

■ The examples are then tranformed into this image space (new features are derived):

x → z = Φ(x),

x = (x1, x2, . . . , xD) → z = (Φ1(x), Φ2(x), . . . , ΦG(x)),

while usually D ≪ G.

■ In the image space, a linear model is trained. However, this is equivalent to training a
non-linear model in the original space.

fG(z) = w1z1 + w2z2 + . . . + wGzG + w0

f (x) = fG(Φ(x)) = w1Φ1(x) + w2Φ2(x) + . . . + wGΦG(x) + w0
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Feature space Image space

x = (x1, x2, . . . , xD) z = (z1, z2, . . . , zG)
z1 = log x1

z2 = x2
1 x3

z3 = ex2

. . .

f (x) = w1 log x1 + w2x2
1 x3 +

w3ex2 + . . . + w0

fG(z) = w1z1 + w2z2 + w3z3 +
. . . + w0

Transformation into
a high-dimensional image

space

Training a linear
model in the
image space

Non-linear model in the
feature space
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Advantages:

■ Universal, generally usable method.

Disadvantages:

■ We must define what new features shall form the high-dimensional space F.

■ The examples must be really transformed into the high-dimensional space F.

For certain type of algorithms, there is a method how to perform the basis expansion
withou actually carrying out the mapping!
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To reiterate: when using the optimal separating hyperplane, the examples x occur only in

the optimization criterion
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

and in the decision rule f (x) = sign

(
|T|

∑
i=1

αiy
(i)

x
(i)

x
T + w0

)
.
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To reiterate: when using the optimal separating hyperplane, the examples x occur only in

the optimization criterion
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

and in the decision rule f (x) = sign

(
|T|

∑
i=1

αiy
(i)

x
(i)

x
T + w0

)
.

Application of the basis expansion changes

the optimization criterion to
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)Φ(x

(i))Φ(x
(j))T

and the decision rule to f (x) = sign

(
|T|

∑
i=1

αiy
(i)Φ(x

(i))Φ(x)T + w0

)
.
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To reiterate: when using the optimal separating hyperplane, the examples x occur only in

the optimization criterion
|T|

∑
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αi −
1

2

|T|
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x
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and in the decision rule f (x) = sign

(
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)
.

Application of the basis expansion changes

the optimization criterion to
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)Φ(x

(i))Φ(x
(j))T

and the decision rule to f (x) = sign

(
|T|

∑
i=1

αiy
(i)Φ(x

(i))Φ(x)T + w0

)
.

What if we use a scalar function K(x(i), x(j)) instead of the dot product in the image space?

The optimization criterion:
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)K(x

(i), x
(j))

The discrimination function: f (x) = sign

(
|T|

∑
i=1

αiy
(i)K(x

(i), x) + w0

)
.
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There are function of 2 vector arguments K(a, b) which provide values equal to the dot
product Φ(a)Φ(b)T of the images of the vectors a and b in certain high-dimensional
image space. Such functions are called kernel functions or kernels.
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There are function of 2 vector arguments K(a, b) which provide values equal to the dot
product Φ(a)Φ(b)T of the images of the vectors a and b in certain high-dimensional
image space. Such functions are called kernel functions or kernels.

Kernel trick: Let’s have a linear algorithm in which the examples x occur only in dot
products.

■ Such an algorithm can be made non-linear by replacing the dot products of examples
x with kernels.

■ The result is the same is if the algorithm was trained in some high-dimensional image
space with the coordinates given by many non-linear basis functions.

■ Thanks to kernels, it is not needed to perform the mapping, the algorithm is much
more efficient.
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There are function of 2 vector arguments K(a, b) which provide values equal to the dot
product Φ(a)Φ(b)T of the images of the vectors a and b in certain high-dimensional
image space. Such functions are called kernel functions or kernels.

Kernel trick: Let’s have a linear algorithm in which the examples x occur only in dot
products.

■ Such an algorithm can be made non-linear by replacing the dot products of examples
x with kernels.

■ The result is the same is if the algorithm was trained in some high-dimensional image
space with the coordinates given by many non-linear basis functions.

■ Thanks to kernels, it is not needed to perform the mapping, the algorithm is much
more efficient.

Frequently used kernels:

Polynomial: K(a, b) = (ab
T + 1)d, where d is the degree of the polynom.

Gaussian (RBF): K(a, b) = exp

(
−
|a − b|2

σ2

)
, where σ

2 is the ,,width“ of Gaussian.



Support vector machine

Rehearsal

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. . .

Support vector
machine

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM
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Support vector machine (SVM)

=

optimal separating hyperplane

+

kernel trick
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