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Linear discrimination function

Binary classification of objects x (classification into 2 classes, dichotomy):

m For 2 classes, 1 discrimination function is enough.

Rfﬁir:;lm m  Decision rule:

Optimal separatin ; .

i putistonc/ el SERTNARECYUCD)
When a linear decision f(x(l)) < O < :/V\(Z) = —1

boundary is not
enough. ..

Support vector Learning of the linear discrimination function by the perceptron algorithm:

machine

m  Optimization of

7| | | . o . ) //,. )
](w, T) = Z I <y(l) 7§ ;f/\(l)> . . ° /,/ ‘///./A
i=1 b .././ /'//
i ° LT e
o P /. g P
® =T e °
m  The weight vector is a weighted sum P L BT .
of the training points x(), 7 /,/'/ * e
m Perceptron finds any separating - Ce o ¢
hyperplane, if exists.

= Among the infinite number of
separating hyperplanes, which one is
the best?
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Optimal separating hyperplane
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Optimal separating hyperplane

Margin (cz:odstup): Support vectors:
=  “The width of the band in which the decision m Data points x lying at the plus 1 level or
boundary can move (in the direction of its minus 1 level.
hor me},l vector) without touching any data ®  Only these points influence the decision
point. boundary!
Maximum margin linear classifier Why we would like to maximize the margin?
‘ m Intuitively, it is safe.
o * xwl+wy=1 m If we make a small error in estimating the
. xw! +wy =0 boundary, the classification will likely stay
xw! +wy = —1 correct.

m  The model is invariant with respect to the
training set changes, except the changes of
support vectors.

m  There are sound theoretical results (based on
VC dimension) that having a maximum
margin classifier is good.

=  Maximal margin works well in practice.

Y

Plus 1 level: {x : xw! +wy =1}
Minus 1 level: {x : xw! +wy = —1}
Decision boundary: {x : xw! + wy = 0}
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Margin size

How to compute the margin M given w = (w1, ..., wp), wo?

= Let’s choose two points x* and
x~, lying in the plus 1 level and
minus 1 level, respectively.

Rehearsal

Optimal separating
hyperplane

¢ Optimal SH m Let’s compute the margin M as
¢ Vargmn size their distance.

e OSH learning
e OSH: remarks
e Demo
When a linear decision

boundary is not
enough. ..

Support vector

machine We know that:

xTw! +wy =1

x"w! + wy = —1

xT +Aw=x"

3\ — 22
L ww!  ||wl?
Thus the margin size is
_ 2 2
M= |x" —x7|| = |[Aw]| = Afw| = WIIWII = Ta
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Optimal separating hyperplane learning

We want to maximize margin M = m subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
Rehearsal quadratic programming (QP) task.

Optimal separating
hyperplane
e Optimal SH

e Margin size

e OSH learning
e OSH: remarks
e Demo
When a linear decision

boundary is not
enough. ..

Support vector
machine
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Optimal separating hyperplane learning

We want to maximize margin M = m subject to the constraints ensuring correct
classification of the training set T. This optimization problem can be formulated as a
8 p p
Rehearsal quadratic programming (QP) task.
Optimal separatin .
hyperplane. - m Primary QP task:
e Optimal SH
e Margin size minimize ww! with respect to w1, ..., wp
e OSH learning
’ SSH: remarks subject to y') (xVw” 4 wy) > 1.
® L)emo

When a linear decision
boundary is not
enough. ..

Support vector
machine
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Optimal separating hyperplane learning

We want to maximize margin M = ” I subject to the constraints ensuring correct
classification of the training set T. This optimization problem can be formulated as a
Rehearsal quadratic programming (QP) task.
Optimal separatin .
hyperplane. - m Primary QP task:
e Optimal SH
* Margin size minimize ww’ with respect to wy, ..., wp
e OSH learning
. SSH: remarks subject to y(l) (x(l)wT +wpy) > 1.
® Demo

When a hn.ear decision - Du al QP ta Sk:

boundary is not

enough. ..
|T] T] |7

Support vector L. 1 NT

machine maximize Z Z Z o; oc]y ) xDx()” with respect to aq, ..., &7
i=1 i=1j=

subject to a; > 0

|T]

and Z oczy
i=1
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Optimal separating hyperplane learning

We want to maximize margin M = ” || subject to the constraints ensuring correct
classification of the training set T. This optimization problem can be formulated as a
Rehearsal quadratic programming (QP) task.
Optimal separatin .
hyperplane. - m Primary QP task:
e Optimal SH
* Margin size minimize ww! with respect to w, ..., wp
e OSH learning
g SSH: remarks subject to y(l) (x(l)wT +wpy) > 1.
® Demo

When a 1m.ear decision - Dual QP task:

boundary is not

enough. ..
7| | |T]

Support vector L. 1 NT

machine maximize ) _ «; Z Z 0 oc]y xDx)” with respect to ay, ..., & 7|
i=1 i=1j=

subject to a; > 0
|T]
and Y a;y")
i=1
m  From the solution of the dual task, we can compute the solution of the primal task:

7|
w = Zocly wo = y*) — x

where (x(), y(¥)) is any support vector, i.e. a > 0.
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Optimal separating hyperplane: concluding remarks

The importance of dual formulation:

m  The QP task in dual formulation is easier to solve for QP solvers than the primal

Rehearsal f ormulation.

Optimal separating
hyperplane

e Optimal SH

= New, unseen examples can be classified using function

e Margin size |T]| ' .

e OSH learning f(x, w, wO) — Sign(wa _|_ wo) — Slgn Z “iy(l)x(l)xT _|_ wO ,
e OSH: remarks i—1

e Demo

When a linear decision i.e. the discrimination function contains the examples x only in the form of dot

boundary is not

enough. .. products (which will be useful later).

Support vector m  The examples with a; > 0 are support vectors, thus the sums may be carried out only
— over the support vectors.

m  The dual formulation allows for other tricks which you will learn later.

What if the data are not linearly separable?

m There is a generalization of the QP task formulation for this case (soft margin).
m  The primal task has double the number of constraints, the task is more complex.
m  The results for the QP task with soft margin are of the same type as before.
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Rehearsal

Optimal separating hyperplane: demo

Optimal separating
hyperplane

e Optimal SH
e Margin size
e OSH learning
e OSH: remarks
e Demo
When a linear decision

boundary is not
enough. ..

Support vector
machine
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When a linear decision boundary is not enough...
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Rehearsal

Basis expansion

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

e Basis expansion
e Two spaces
e Remarks

Support vector
machine

a.k.a. feature space straightening.
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Basis expansion

a.k.a. feature space straightening.

Rehearsal why?

Optimal separating . o . . .

hyperplane m Linear decision boundary (or linear regression model) may not be flexible enough to
When a linear decision perform precise classification (regression).

boundary is not ] L. . . .

enough... m  The algorithms for fitting linear models can be used to fit non-linear models!

e Basis expansion
e Two spaces
e Remarks

Support vector
machine
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Basis expansion

a.k.a. feature space straightening.

Rehearsal Why?

Optimal separating ) . . )

hyperplane m Linear decision boundary (or linear regression model) may not be flexible enough to
When a linear decision perform precise classification (regression).

boundary is not . L. . . ,

enough... m  The algorithms for fitting linear models can be used to fit non-linear models!

e Basis expansion

e Two spaces

e Remarks How?
Support vector . . g . .
L m Let’s define a new multidimensional image space F.

m  The examples are then tranformed into this image space (new features are derived):

x — z=®(x),
x=(x1,%2,...,xp) — z=(D1(x), P2(x),...,Pc(x)),

while usually D < G.

m In the image space, a linear model is trained. However, this is equivalent to training a
non-linear model in the original space.

G(Z) = W1Z1 + W22y + ... +WgZg + Wy
f(x) = fo(P(x)) = w1 P1(x) + w2 P2(x) + ... + wcPs(x) + wo

~
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Rehearsal

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

e Basis expansion
e Two spaces
e Remarks

Support vector
machine

Two coordinate systems

Transformation into
a high-dimensional image

space
e ——
Feature spac/ | Imapespace
x = (x1,x2,...,%D) z=(z1,22,...,2g)
z1 = logx o .
Lo zg ' Training a linear
Zp = X1X3 .
Jo— model in the
: image space
— wql 2 _
f(x) =wilogx1 + waxixs + fc(z) = wiz1 + wazo + w3zz +
ZU3€x2-|-...—|-kZU0 )

Non-linear model in the
teature space
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Rehearsal

Two coordinate systems: graphically

Optimal separating
hyperplane

Feature space

Image space

When a linear decision
boundary is not
enough. ..

e Basis expansion
e Two spaces
e Remarks

Support vector
machine

10
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Two coordinate systems: graphically

Transformation into
a high-dimensional
image space

Rehearsal
Optimal separating Featur e Space /\ age space
hyperplane p \h’{g p
When a linear decision / \

boundary is not ' 100
0.8 .
enough. .. o % ’
. . 80
e Basis expansion 04 70
0.2
® Two spaces Ofe  weeaee ee e i
“x 50
e Remarks 02 o
-0.4 30
Support vector -0 20
machine -08 10
-1
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Rehearsal

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

e Basis expansion
e Two spaces
e Remarks

Support vector
machine

P. Pogik © 2014

Two coordinate systems: graphically

Transformation into
a high-dimensional
image space

Feature space /\\h@ge space
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Training
a linear model
in the image

space
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Two coordinate systems: graphically

Transformation into
a high-dimensional
image space

Rehearsal
Optimal separating Feature Sspace /\ age space
hyperplane P \h{g p
When a linear decision / \

boundary is not O: 100
enough. .. O:ﬁ % s
e Basis expansion 04 :
* Two spaces O .
e Remarks -02 ) jz
Support vector :2: 23
machine - oo e Training
: o e o a linear model
in the image
Space

-1000

-1500

-2000

-2500
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[

Non-linear model in the
feature space
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Basis expansion: remarks

Advantages:
m  Universal, generally usable method.
Rehearsal
Optimal separating )
hyperplane Dlsadvantages:

Whenalineardecision m We must define what new features shall form the high-dimensional space F.

boundary is not

enough. . m  The examples must be really transformed into the high-dimensional space F.

e Basis expansion

e Two spaces

* Remarks For certain type of algorithms, there is a method how to perform the basis expansion
Support vector withou actually carrying out the mapping!
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Support vector machine
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Optimal separating hyperplane combined with the basis expansion

To reiterate: when using the optimal separating hyperplane, the examples x occur only in

Tomm
Rehearsal the optimization criterion Z; &= 5 Z; Z; iy Dy D xU)
i= i=1j=

Optimal separating
hyperplane

When a linear decision

-
bt and in the decision rule f(x) = sign ( oy Dol 4 w0> :
—~

1=

Support vector
machine

e OSH + basis exp.
e Kernel trick

e SVM

e Linear SVM

e Gaussian SVM
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Optimal separating hyperplane combined with the basis expansion

To reiterate: when using the optimal separating hyperplane, the examples x occur only in

Rehearsal |T| 1 |T| |T| NT
the optimization criterion Z np— = Z Z o oc]y x() xU)

Optimal separating —

hyperplane =1 1 1j=1

When a linear decision ‘T| < ) T

boundary is not 1 Tl

e and in the decision rule f(x) = sign Z iy DDl 4w |

Z_

Support vector

H:ag;;i v, Application of the basis expansion changes

e Kernel trick

e SVM |T]| 1 |T| |T| '

o Linear SVM the optimization criterion to Z o — = Z Z o; a]y y(] ) d(x (i ))q)(x(] ) )b

e Gaussian SVM =1 2 i=1j=1
|T] ,

and the decision rule to f(x) = sign Z ay Do (x D (x)T +wy | .

i=1
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Rehearsal

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

Support vector
machine

e OSH + basis exp.
e Kernel trick

e SVM

e Linear SVM

e Gaussian SVM

Optimal separating hyperplane combined with the basis expansion

To reiterate: when using the optimal separating hyperplane, the examples x occur only in

T T o
the opt1m1zat10n criterion Z o — = Z Z K oc]y ) (7)
i=1 1 1j=1

|T|
and in the decision rule f(x) = sign (Z aiy DT 4 w0> :

Z_

Application of the basis expansion changes

|T| 1 17117
the optimization criterion to Y a; — — 0 D (x)D(xUNT
ptimizati iteri i:zllzizl]z ]yy O (x\V)D(xV))
|T| ,
and the decision rule to f(x) = sign szly O (xNd(x)T +wy | -
i=1

What if we use a scalar function K (x(), x(/)) instead of the dot product in the image space?

|T] 1 I 7]
The optimization criterion: K — = oy Dy K x(i),x(f)
P Z Z:Z; i~ 5 122;]; i%yy ( )
|T] _
The discrimination function: f(x) = sign Z aiy DK (xD, x) +wp | .

i=
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Rehearsal

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

Support vector
machine

e OSH + basis exp.
e Kernel trick

e SVM

e Linear SVM

e Gaussian SVM

Kernel trick

There are function of 2 vector arguments K(a, b) which provide values equal to the dot
product ®(a)®(b)! of the images of the vectors a and b in certain high-dimensional

image space. Such functions are called kernel functions or kernels.

P. Pogik © 2014

Artificial Intelligence — 17 / 20



Kernel trick

There are function of 2 vector arguments K(a, b) which provide values equal to the dot
product ®(a)®(b)! of the images of the vectors a and b in certain high-dimensional
image space. Such functions are called kernel functions or kernels.

Rehearsal

Optimal separating
hyperplane Kernel trick: Let’s have a linear algorithm in which the examples x occur only in dot

When a linear decision products.

boundary is not

enough... m  Such an algorithm can be made non-linear by replacing the dot products of examples
Support vector x with kernels.
machine
« OSH + basis exp. m  The result is the same is if the algorithm was trained in some high-dimensional image
* Kernel trick space with the coordinates given by many non-linear basis functions.
e SVM .. . . .
o Linear SUM m  Thanks to kernels, it is not needed to perform the mapping, the algorithm is much
e Gaussian SVM more efficient.
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Kernel trick

There are function of 2 vector arguments K(a, b) which provide values equal to the dot
product ®(a)®(b)! of the images of the vectors a and b in certain high-dimensional
image space. Such functions are called kernel functions or kernels.

Rehearsal

Optimal separating
hyperplane Kernel trick: Let’s have a linear algorithm in which the examples x occur only in dot

When a linear decision products.

boundary is not

enough... m  Such an algorithm can be made non-linear by replacing the dot products of examples
Support vector x with kernels.
machine
« OSH + basis exp. m  The result is the same is if the algorithm was trained in some high-dimensional image
* Kernel trick space with the coordinates given by many non-linear basis functions.
e SVM .o . . .
o Linear SUM m  Thanks to kernels, it is not needed to perform the mapping, the algorithm is much
e Gaussian SVM more efficient.

Frequently used kernels:

Polynomial: K(a,b) = (ab” +1)?, where d is the degree of the polynom.

_la—b]?

=" ) _where 02 is the ,, width” of Gaussian.

Gaussian (RBF): K(a,b) = exp (
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Rehearsal

Support vector machine

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

Support vector
machine

e OSH + basis exp.
e Kernel trick

e SVM

e Linear SVM

e Gaussian SVM
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Rehearsal

Support vector machine

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

Support vector
machine

e OSH + basis exp.
e Kernel trick

e SVM

e Linear SVM

e Gaussian SVM

Support vector machine (SVM)

optimal separating hyperplane
+

kernel trick
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Demo: SVM with linear kernel

Rehearsal

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

Support vector
machine

e OSH + basis exp.
e Kernel trick

e SVM

e Linear SVM

e Gaussian SVM
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Demo: SVM with Gaussian (RBF) kernel

Rehearsal

Optimal separating
hyperplane

When a linear decision
boundary is not
enough. ..

Support vector
machine

e OSH + basis exp.
e Kernel trick

e SVM

e Linear SVM _ _ . . _
e Gaussian SVM 3
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