Optimal separating hyperplane. Basis expansion.

Kernel trick. Support vector machine.
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Linear discrimination function

= For 2 classes, 1 discrimination function is enough.
m  Decision rule:

FED) >0 =7 = 41 e
f(x@) <0 = i) = -1 -

= Optimization of

IT|

Jew ) = L1 (s #70)

m  The weight vector is a weighted sum of the training
points x(),
m  Perceptron finds any separating hyperplane, if exists.

= Among the infinite number of separating hyperplanes,
which one is the best?

Binary classification of objects x (classification into 2 classes, dichotomy):

7 = sign (f(x))

Learning of the linear discrimination function by the perceptron algorithm:
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Optimal separating hyperplane
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Optimal separating hyperplane
Margin (cz:odstup):

m  “The width of the band in which the decision boundary
can move (in the direction of its normal vector) without
touching any data point.”

Maximum margin linear classifier

° ® xwT4wy=1

_wa+w0 =0
xw!’ +wy=—1

Plus 1level: {x: xwT +wo =1}
Minus 1 level: {x : xwT +wy = —1}
Decision boundary: {x : xw” + wy = 0}

Support vectors:
= Data points x lying at the plus 1 level or minus 1 level.
= Only these points influence the decision boundary!
Why we would like to maximize the margin?
m Intuitively, it is safe.

= If we make a small error in estimating the boundary, the
classification will likely stay correct.

m  The model is invariant with respect to the training set
changes, except the changes of support vectors.

m  There are sound theoretical results (based on VC
dimension) that having a maximum margin classifier is
good.

= Maximal margin works well in practice.
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Margin size

How to compute the margin M given w = (w1, ..., wp), wo?

plus 1 level and minus 1 level, respectively.

m  Let’s compute the margin M as their distance.

Thus the margin size is

_ 2 2
M= Hx* —x || = [[Aw| = Aw]| = WHWH = m

= Let’s choose two points x™ and x~, lying in the o xwT +wy =1

xw! 4wy =0

xw! +wy=—1

)
We know that: And we can derive:
xtwl +wy =1 (xt —x)wT =2
xw!l fwy=—-1 (x~ +Aw—x)w' =2
_7c7_‘_/\'(,4;:_)c+ /\waZZ
22
Cww! w|?
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Optimal separating hyperplane learning

optimization problem can be formulated as a quadratic programming (QP) task.

m  Primary QP task:

minimize ww’ with respect to wq, ..., wp
subject to ¥ (xNwT +wp) > 1.
m  Dual QP task:

IT| 1 11T
imi 1 iy Dy D@D i
maximize o [ a3 x\x with respect to aq,...,a
i; iT5 l;]; %Yy P 1 7|
subject toa; > 0
7| )
and Za,-y(’) =0.
i=1
m  From the solution of the dual task, we can compute the solution of the primal task:

|T|
w = Zt’éiy(i)x(i), wy = y(k) _ x(k)wT,
i=1

where (x®%),y(})) is any support vector, i.e. ay > 0.

We want to maximize margin M = ﬁ subject to the constraints ensuring correct classification of the training set T. This
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Optimal separating hyperplane: concluding remarks
The importance of dual formulation:

m  The QP task in dual formulation is easier to solve for QP solvers than the primal formulation.
= New, unseen examples can be classified using function

7| L
f(x,w,wy) = sign(xw” +wp) = sign <Z ay D@Dyl 4 wg> ,
i=1
i.e. the discrimination function contains the examples x only in the form of dot products (which will be useful later).
m  The examples with «; > 0 are support vectors, thus the sums may be carried out only over the support vectors.
®  The dual formulation allows for other tricks which you will learn later.

What if the data are not linearly separable?
m  There is a generalization of the QP task formulation for this case (soft margin).
m  The primal task has double the number of constraints, the task is more complex.
m  The results for the QP task with soft margin are of the same type as before.
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Optimal separating hyperplane: demo
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When a linear decision boundary is not enough...

Basis expansion

ak.a. feature space straightening.

Why?

How?

x = z=3>0(x),

X = (X],XZ,..

while usually D < G.

fe

m  Let’s define a new multidimensional image space F.

(z) = w1z + wazp + ...+ wezg + wo
f(x) = fo(@(x)) = w1 P1(x) + waPa(x) + ... + weDg(x) + wp

m  Linear decision boundary (or linear regression model) may not be flexible enough to perform precise classification (regression).

m  The algorithms for fitting linear models can be used to fit non-linear models!

m  The examples are then tranformed into this image space (new features are derived):

oxp) = 2= (P1(x), Pa2(x), ..., Pg(x)),

m In the image space, a linear model is trained. However, this is equivalent to training a non-linear model in the original space.
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Two coordinate systems

space

Transformation into
a high-dimensional image

Feature spac;/
/

x = (x1,%,...,%p)

ImagXQpace
\

z=(21,22,...,2g)

z1 = log x; L. .

zg Training a linear
2 =X model in the
z3 = e*2

image space

f(x) =wilogx + waxixs +
w3e2 + ... +‘wg

fo(z) = wiz1 + wazo + w3zz +

+0,

N\

/
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Non-linear model in the

feature space
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Two coordinate systems: graphically ¢ ... .~

a high-dimensional
image space

Feature space \Me space

Training
a linear model
in the image

/ space
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Non-linear model in the
feature space

Basis expansion: remarks

Advantages:

= Universal, generally usable method.

Disadvantages:

= We must define what new features shall form the high-dimensional space F.
m  The examples must be really transformed into the high-dimensional space F.

For certain type of algorithms, there is a method how to perform the basis expansion without actually carrying out the mapping!
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Support vector machine 15/ 20

Optimal separating hyperplane combined with the basis expansion
To reiterate: when using the optimal separating hyperplane, the examples x occur only in

7 o
the optimization criterion ) a; — > Yo Y gy Dy D)yl
i=1 i=1j=1

LY
and in the decision rule f(x) = sign (E iy DT 4 w0> .
i=1

Application of the basis expansion changes
IT| 1 1T

the optimization criterion to ap— = ajayDyD e (x)p(x0)T
P 1:21 i 2;}; iy 'y (') (xV)

IT| ) N
and the decision rule to f(x) = sign (Z ayDo(x Mo (x)" + wo> .
i=1

What if we use a scalar function K(x(), x()) instead of the dot product in the image space?
|T| 1 171 |7]

The optimization criterion: o — = wayDy K xm,xm
P g i 2;]; %Yy ( )

|T| ,
The discrimination function: f(x) = sign (Z ay DK (>, x) + wo> .
i=1
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Kernel trick

There are function of 2 vector arguments K(a, b) which provide values equal to the dot product ®(a)®(b)T of the images of the
vectors a and b in certain high-dimensional image space. Such functions are called kernel functions or kernels.

Kernel trick: Let’s have a linear algorithm in which the examples x occur only in dot products.

®  Such an algorithm can be made non-linear by replacing the dot products of examples x with kernels.

m  The result is the same is if the algorithm was trained in some high-dimensional image space with the coordinates given by many
non-linear basis functions.

m  Thanks to kernels, it is not needed to perform the mapping, the algorithm is much more efficient.

Frequently used kernels:

Polynomial: K(a,b) = (ab” + 1)¢, where d is the degree of the polynom.

12
Gaussian (RBF): K(a,b) = exp <— |a UZb‘ ) , where 02 is the ,width” of Gaussian.
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Support vector machine

Support vector machine (SVM)

optimal separating hyperplane
+

kernel trick
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Demo: SVM with linear kernel
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Demo: SVM with Gaussian (RBF) kernel

2 3
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