Optimal separating hyperplane. Basis expansion. Kernel trick. Support vector machine.

Petr Pošík

Kehearsal	2
Linear DF	
Optimal separating hyperplane	4
Optimal SH	5
Optimal separating hyperplane Optimal SH Margin size OCU begins in a	6
OSH learning.	7
OSH: remarks	8
Demo	
When a linear decision boundary is not enough	10
Basis expansion	
Two spaces.	
Two spaces Remarks	
Support vector machine	15
Support vector machine OSH + basis exp	
Kernel trick	
SVM	
Linear SVM	
Gaussian SVM.	

Linear discrimination function

Binary classification of objects *x* (classification into 2 classes, dichotomy):

- For 2 classes, 1 discrimination function is enough.
- Decision rule:

$$\begin{array}{l} f(\pmb{x}^{(i)}) > 0 \Longleftrightarrow \widehat{y}^{(i)} = +1 \\ f(\pmb{x}^{(i)}) < 0 \Longleftrightarrow \widehat{y}^{(i)} = -1 \end{array} \right\} \qquad \text{i.e.} \qquad \widehat{y}^{(i)} = \text{sign}\left(f(\pmb{x}^{(i)})\right)$$

Learning of the linear discrimination function by the perceptron algorithm:

Optimization of

$$J(\boldsymbol{w},T) = \sum_{i=1}^{|T|} \mathbb{I}\left(y^{(i)} \neq \widehat{y}^{(i)}\right)$$

- The weight vector is a weighted sum of the training points x⁽ⁱ⁾.
- Perceptron finds *any* separating hyperplane, if exists.
- Among the infinite number of separating hyperplanes, which one is the best?

P. Pošík © 2015

Artificial Intelligence – 3 / 20

Optimal separating hyperplane

4 / 20

Optimal separating hyperplane

Margin (cz:odstup):

"The width of the band in which the decision boundary can move (in the direction of its normal vector) without touching any data point."

Maximum margin linear classifier

Plus 1 level: $\{x : x\boldsymbol{w}^T + w_0 = 1\}$ Minus 1 level: $\{x : x\boldsymbol{w}^T + w_0 = -1\}$ Decision boundary: $\{x : x\boldsymbol{w}^T + w_0 = 0\}$

Support vectors:

- Data points x lying at the plus 1 level or minus 1 level.
- Only these points influence the decision boundary!

Why we would like to maximize the margin?

- Intuitively, it is safe.
- If we make a small error in estimating the boundary, the classification will likely stay correct.
- The model is invariant with respect to the training set changes, except the changes of support vectors.
- There are sound theoretical results (based on VC dimension) that having a maximum margin classifier is good.
- Maximal margin works well in practice.

P. Pošík © 2015

Artificial Intelligence – 5 / 20

Margin size

How to compute the margin M given $\mathbf{w} = (w_1, \dots, w_D), w_0$?

- Let's choose two points x^+ and x^- , lying in the plus 1 level and minus 1 level, respectively.
- Let's compute the margin *M* as their distance.

We know that:

$$x^{+}w^{T} + w_{0} = 1$$

$$x^{-}w^{T} + w_{0} = -1$$

$$x^{-} + \lambda w = x^{+}$$

Thus the margin size is

And we can derive:

$$(x^{+} - x^{-})w^{T} = 2$$
$$(x^{-} + \lambda w - x^{-})w^{T} = 2$$
$$\lambda w w^{T} = 2$$
$$\lambda = \frac{2}{ww^{T}} = \frac{2}{\|w\|^{2}}$$

P. Pošík © 2015

Artificial Intelligence – 6 / 20

Optimal separating hyperplane learning

We want to maximize margin $M = \frac{2}{\|w\|}$ subject to the constraints ensuring correct classification of the training set T. This optimization problem can be formulated as a *quadratic programming* (QP) task.

3

■ Primary QP task:

minimize
$$ww^T$$
 with respect to $w_1, ..., w_D$ subject to $y^{(i)}(x^{(i)}w^T + w_0) \ge 1$.

■ Dual QP task:

$$\begin{aligned} & \text{maximize } \sum_{i=1}^{|T|} \alpha_i - \frac{1}{2} \sum_{i=1}^{|T|} \sum_{j=1}^{|T|} \alpha_i \alpha_j y^{(i)} y^{(j)} x^{(i)} x^{(j)^T} \text{ with respect to } \alpha_1, \dots, \alpha_{|T|} \\ & \text{subject to } \alpha_i \geq 0 \\ & \text{and } \sum_{i=1}^{|T|} \alpha_i y^{(i)} = 0. \end{aligned}$$

■ From the solution of the dual task, we can compute the solution of the primal task:

$$w = \sum_{i=1}^{|T|} \alpha_i y^{(i)} x^{(i)},$$
 $w_0 = y^{(k)} - x^{(k)} w^T,$

where $(x^{(k)}, y^{(k)})$ is any *support vector*, i.e. $\alpha_k > 0$.

P. Pošík © 2015

Artificial Intelligence – 7 / 20

Optimal separating hyperplane: concluding remarks

The importance of dual formulation:

- The QP task in dual formulation is easier to solve for QP solvers than the primal formulation.
- New, unseen examples can be classified using function

$$f(x, w, w_0) = \operatorname{sign}(xw^T + w_0) = \operatorname{sign}\left(\sum_{i=1}^{|T|} \alpha_i y^{(i)} x^{(i)} x^T + w_0\right),$$

i.e. the discrimination function contains the examples *x* only in the form of dot products (which will be useful later).

- The examples with $\alpha_i > 0$ are *support vectors*, thus the sums may be carried out only over the support vectors.
- The dual formulation allows for other tricks which you will learn later.

What if the data are not linearly separable?

- There is a generalization of the QP task formulation for this case (*soft margin*).
- The primal task has double the number of constraints, the task is more complex.
- The results for the QP task with *soft margin* are of the same type as before.

P. Pošík © 2015

Artificial Intelligence – 8 / 20

P. Pošík © 2015

Artificial Intelligence – 9 / 20

Basis expansion

a.k.a. feature space straightening.

Why?

- Linear decision boundary (or linear regression model) may not be flexible enough to perform precise classification (regression).
- The algorithms for fitting linear models can be used to fit *non-linear models*!

How?

- Let's define a new multidimensional image space *F*.
- The examples are then tranformed into this image space (new features are derived):

$$x \rightarrow z = \Phi(x),$$

$$x = (x_1, x_2, \dots, x_D) \rightarrow z = (\Phi_1(x), \Phi_2(x), \dots, \Phi_G(x)),$$

while usually $D \ll G$.

■ In the image space, a linear model is trained. However, this is equivalent to training a non-linear model in the original space.

$$f_G(z) = w_1 z_1 + w_2 z_2 + \dots + w_G z_G + w_0$$

$$f(x) = f_G(\Phi(x)) = w_1 \Phi_1(x) + w_2 \Phi_2(x) + \dots + w_G \Phi_G(x) + w_0$$

P. Pošík © 2015

Artificial Intelligence – 11 / 20

Non-linear model in the feature space

Basis expansion: remarks

Advantages:

■ Universal, generally usable method.

Disadvantages:

- We must define what new features shall form the high-dimensional space *F*.
- The examples must be really transformed into the high-dimensional space *F*.

For certain type of algorithms, there is a method how to perform the basis expansion without actually carrying out the mapping!

P. Pošík © 2015

Artificial Intelligence – 14 / 20

Optimal separating hyperplane combined with the basis expansion

To reiterate: when using the optimal separating hyperplane, the examples x occur only in

the optimization criterion
$$\sum_{i=1}^{|T|} \alpha_i - \frac{1}{2} \sum_{i=1}^{|T|} \sum_{j=1}^{|T|} \alpha_i \alpha_j y^{(i)} y^{(j)} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(j)}^T$$

and in the decision rule
$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{|T|} \alpha_i y^{(i)} \mathbf{x}^{(i)} \mathbf{x}^T + w_0\right)$$
.

Application of the basis expansion changes

the optimization criterion to
$$\sum_{i=1}^{|T|} \alpha_i - \frac{1}{2} \sum_{i=1}^{|T|} \sum_{j=1}^{|T|} \alpha_i \alpha_j y^{(i)} y^{(j)} \Phi(\mathbf{x}^{(i)}) \Phi(\mathbf{x}^{(j)})^T$$

and the decision rule to
$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{|T|} \alpha_i y^{(i)} \Phi(\mathbf{x}^{(i)}) \Phi(\mathbf{x})^T + w_0\right)$$
.

What if we use a scalar function $K(x^{(i)}, x^{(j)})$ instead of the dot product in the image space?

The optimization criterion:
$$\sum_{i=1}^{|T|} \alpha_i - \frac{1}{2} \sum_{i=1}^{|T|} \sum_{j=1}^{|T|} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

The discrimination function:
$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{|T|} \alpha_i y^{(i)} \mathbf{K}(\mathbf{x}^{(i)}, \mathbf{x}) + w_0\right)$$
.

P. Pošík © 2015

Artificial Intelligence - 16 / 20

Kernel trick

There are function of 2 vector arguments K(a, b) which provide values equal to the dot product $\Phi(a)\Phi(b)^T$ of the images of the vectors a and b in certain high-dimensional image space. Such functions are called **kernel functions** or **kernels**.

Kernel trick: Let's have a linear algorithm in which the examples *x* occur only in dot products.

- Such an algorithm can be made non-linear by replacing the dot products of examples *x* with *kernels*.
- The result is the same is if the algorithm was trained in some high-dimensional image space with the coordinates given by many non-linear basis functions.
- Thanks to kernels, it is not needed to perform the mapping, the algorithm is much more efficient.

Frequently used kernels:

Polynomial:
$$K(a, b) = (ab^T + 1)^d$$
, where d is the degree of the polynom.

Gaussian (RBF):
$$K(a,b) = \exp\left(-\frac{|a-b|^2}{\sigma^2}\right)$$
 , where σ^2 is the "width" of Gaussian.

P. Pošík © 2015

Artificial Intelligence – 17 / 20

P. Pošík © 2015 Artificial Intelligence – 18 / 20

P. Pošík © 2015 Artificial Intelligence – 19 / 20

P. Pošík © 2015 Artificial Intelligence – 20 / 20