Scheduling

Radek Mař̌ík

FEE CTU, K13132

April 15, 2014

Obsah

(1) Introduction to Scheduling

- Methodology Overview
- Real Problem Examples
- Terminology
(2) Classification of Scheduling Problems
- Machine environment
- Job Characteristics
- Optimization
(3) Local Search Methods
- General
- Tabu Search
- Classical planning representation
- What to do
- What order
- Extensions
- How long an action takes
- When it occurs
- Scheduling
- Temporal constraints,
- Resource contraints.
- Examples
- Airline scheduling,
- Which aircraft is assigned to which fligths
- Departure and arrival time,
- A number of employees is limited.
- An aircraft crew, that serves during one flight, cannot be assigned to another flight.

General Approach ${ }^{[\text {Rudi3] }}$

Introduction

- Graham's classification of scheduling problems

General solving methods

- Exact solving method
- Branch and bound methods
- Heuristics
- dispatching rules
- beam search
- local search:
simulated annealing, tabu search, genetic algorithms
- Mathematical programming: formulation
- linear programming
- integer programming
- Constraing satisfaction programming
- Project planning: project representation, critical path, time and cost trading, working force
- Scheduling: dispatching rules, branch and bound method, beam search,
- Scheduling in manufacturing: line with flexible time, with fixed time, with parallel working stations.
- Reservations: interval scheduling, reservation system with reserves.
- Timetabling: scheduling with operators, scheduling with work force.
- Scheduling of employees: free day scheduling, work shift scheduling, cyclic shift scheduling.
- University scheduling: theory and practice

Schedule ${ }^{\text {[Rudis] }}$

Schedule:

- determined by tasks assignments to given times slots using given resources, where the tasks should be performed

Complete schedule:

- all tasks of a given problem are covered by the schedule Partial schedule:
- some tasks of a given problem are not resolved/assigned

Consistent schedule:

- a schedule in which all constraints are satisfied w.r.t. resource and tasks, e.g.
- at most one tasks is performed on a signel machine with a unit capacity

Consistent complete schedule vs. consistent partial schedule
Optimal schedule:

- the assigments of tasks to machines is optimal w.r.t. to a given optimization criterion, e.g..
- $\min C_{\text {max }}$: makespan (completion time of the last task) is minimum

Terminology of Scheduling ${ }^{\text {[Rud13] }}$

Scheduling

concerns optimal allocation or assignment of resources, to a set of tasks or activities over time

- limited amount of resources,
- gain maximization given constraints
- Machines $M_{i}, i=1, \ldots, m$
- Jobs $J_{j}, j=1, \ldots, n$
- (i, j) an operation or processing of $j o b s j$ on machine i
- a job can be composed from several operations,
- example: job 4 has three operations with non-zero processing time $(2,4),(3,4),(6,4)$, i.e. it is performed on machines 2,3,6

- Static parameters of job
- processing time $p_{i j}, p_{j}$:
processing time of job j on machine i
- release date of $j r_{j}$:
earliest starting time of jobs j
- due date d_{j} :
committed completion time of job j (preference)
- vs. deadline:
time, when job j must be finised at latest (requirement)
- weight w_{j} :
importance of job j relatively to other jobs in the system
- Dynamic parameters of job
- start time $S_{i j}, S_{j}$:
time when job j is started on machine i
- completion time $C_{i j}, C_{j}$:
time when job j execution on machine i is finished

- 10 jobs with given processing time
- Precedence constraints
- a given job can be executed after a specified subset of jobs
- Non-preemptive jobs
- jobs cannot be interrupted
- Optimization criteria
- makespan minimization
- worker number minimization
- 10 jobs with given processing time
- Precedence constraints
- a given job can be executed after a specified subset of jobs
- Non-preemptive jobs - jobs cannot be interrupted
- Optimization criteria
- makespan minimization

- worker number minimization

Scheduling Examples ${ }^{\text {[Rudis] }}$

- Scheduling of semiconductor manufacturing
- a large amount of heterogenous products,
- different amounts of produced items,
- machine setup cost, required processing time guarantees
- Scheduling of supply chains
- ex. a forest region \rightarrow paper production \rightarrow products from paper \rightarrow distribution centers \rightarrow end user
- manufacturing cost, transport, storage minimization,
- Scheduling of paper production
- input - wood, output - paper roles, expensive machines, different sorts of papers,
- storage minimization
- Car assembly lines
- manufacturing of different types of cars with different equipment,
- throughput optimization, load balancing
- Lemonade filling into bottles
- 4 flavors, each flavor has its own filling time,
- cycle time minimization, one machine

Introduction to Scheduling
 Real Problem Examples

Scheduling Examples II ${ }^{\text {[Rudis] }}$

- Scheduling of hospital nurses
- different numbers of nurses in working days and weekends,
- weaker requirements for night shift rostering,
- assignment of nurses to shifts, requirement satisfaction, cost minimization
- Grid computing scheduling
- clusters, supercomputers, desktops, special devices,
- scheduling of computation jobs and related resources,
- scheduling of data transfers and data processing
- University scheduling
- Time and rooms selection for subject education at universities
- constraints given for subject placement,
- preference requirements for time and room optimization,
- minimization of overlapping subjects for all students,

Scheduling vs. timetabling ${ }^{\text {[Rudi3] }}$

Scheduling . . . scheduling/planning

- resource allocation for given constraints over objects placed in time-space so that total cost of given resources is minimized,
- focus is given on object ordering, precedence conditions
- ex. manufacturing scheduling: operation ordering determination, time dependencies of operation is important,
- schedule: specifies space and time information

Timetabling

- resource allocation for given constraints over objects placed in time-space so that given criteria are met as much as possible,
- focus is given on time placement of objects
- time horizon is often given in advance (a number of scheduled slots)
- ex. education timetabling: time and a place is assigned to subjects
- timetable: shows when and where events are performed.

Radek Mařík (marikr@fel.cvut.cz)
Scheduling
April 15, $2014 \quad 16 / 43$

Introduction to Scheduling Terminology
Sequencing and Rostering ${ }^{\text {[Rud13] }}$

Sequencing

- for given constraints:
- a construction of job order in which they will be executed
- sequence
- an order in which jobs are executed
- ex. lemonade filling into bottles

Rostering

- resource allocation for given constraints into slots using patterns
- roster
- a list of person names, that determines what jobs are executed and when
- ex. a roster of hospital nurses, a roster of bus drivers

Graham's classification ${ }^{\text {[Rudi3, Nie10] }}$

Graham's classification $\alpha|\beta| \gamma$

(Many) Scheduling problems can be described by a three field notation

- α : the machine environment
- describes a way of job assingments to machines
- β : the job characteristics,
- describes constraints applied to jobs
- γ : the objective criterion to be minimized
- complexity for combinations of scheduling problems

Examples

- $P 3 \mid$ prec $\mid C_{\text {max }}$: bike assembly
- Pm|r$r_{j} \mid \sum w_{j} C_{j}$: parallel machines
- Single machine $(\alpha=1): 1|\ldots| \ldots$
- Identical parallel machines Pm
- m identical machines working in parallel with the same speed
- each job consist of a single operation,
- each job processed by any of the machines m for p_{j} time units
- Uniform parallel machines Qm
- processing time of job j on machine i propotional to its speed v_{i}
- $p_{i j}=p_{j} / v_{i}$
- ex. several computers with processor different speed
- Unrelated parallel machines $R m$
- machine have different speed for different jobs
- machine i process job j with speed $v_{i j}$
- $p_{i j}=p_{j} / v_{i j}$
- ex. vector computer computes vector tasks faster than a classical PC

- Shop Problems

- each tasks is executed sequentially on several machine
- job j consists of several operations (i, j)
- operation (i, j) of jobs j is performed on machine i withing time $p_{i j}$
- ex: job j with 4 operations $(1, j),(2, j),(3, j),(4, j)$

Machine $1 \quad$ Machine 3

Machine 2
Machine 4

- Shop problems are classical studied in details in operations research
- Real problems are ofter more complicated
- utilization of knowledge on subproblems or simplified problems in solutions
- Flow shop Fm
- m machines in series
- each job has to be processed on each machine
- all jobs follow the same route:
- first machine 1 , then machine $2, \ldots$
- if the jobs have to be processed in the same order on all machines, we have a permutation flow shop

- Flexible flow shop FFs

- a generalizatin of flow shop problem
- s phases, a set of parallel machines is assigned to each phase
- i.e. flow shop with s parallel machines
- each job has to be processed by all phase in the same order
- first on a machine of phase 1 , then on a machine of phase $2, \ldots$
- the task can be performed on any machine assigned to a given phase
- Job shop Jm
- flow shop with m machines
- each job has its individual predetermined route to follow
- processing time of a given jobs might be zero for some machines
- $(i, j) \rightarrow(k, j)$ specifies that $j o b j$ is performed on machine i earlier than on machine k
- example: $(2, j) \rightarrow(1, j) \rightarrow(3, j) \rightarrow(4, j)$

- Open shop $O m$

- flow shop with m machines
- processing time of a given jobs might be zero for some machines
- no routing restrictions (this is a scheduling decision)

Constraints β

- Precedence constraints prec
- linear sequence, tree structure
- for jobs a, b we write $a \rightarrow b$, with meaning of $S_{a}+p_{a} \leqslant S_{b}$
- example: bike assembly
- Preemptions pmtn
- a job with a higher priority interrupts the current job
- Machine suitability M_{j}
- a subset of machines M_{j}, on which job j can be executed
- room assignment: appropriate size of the classroom
- games: a computer with a HW graphical library
- Work force constraints W, W_{ℓ}
- another sort of machines is introduced to the problem
- machines need to be served by operators and jobs can be performed only if operators are available, operators W
- different groups of operators with a specific qualification can exist, W_{ℓ} is a number of operators in group ℓ

- Routing constraints

- determine on which machine jobs can be executed,
- an order of job execution in shop problems
- job shop problem: an operation order is given in advance
- open shop problem: a route for the job is specified during scheduling
- Setup time and cost $s_{i j k}, c_{i j k}, s_{j k}, c_{j k}$
- depend on execution sequence
- $s_{i j k}$ time for execution of job k after job j on machine i
- $c_{i j k}$ cost of execution of job k after job j on machine i
- $s_{j k}, c_{j k}$ time/cost independent on machine
- examples
- lemonade filling into bottles
- travelling salesman problem $1\left|s_{j k}\right| C_{\text {max }}$

Optimization: throughput and makespan $\gamma^{\text {[Rudis] }}$

- Makespan $C_{m a x}$: maximum completion time

$$
C_{\max }=\max \left(C_{1}, \ldots, C_{n}\right)
$$

- Example: $C_{\max }=\max \{1,3,4,5,8,7,9\}=9$

Resource 2

Resource 1 | 1 | 3 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- |

- Goal: makespan minimization often
- maximizes throughput
- ensures uniform load of machines (load balancing)
- example: $C_{\max }=\max \{1,2,4,5,7,4,6\}=7$

Resource 2

2	6	5

Resource 1
time

- It is a basic criterion that is used very often.

Optimization: Lateness $\gamma{ }^{\text {[Rudis] }}$

- Lateness of job $j: L_{\max }=C_{j}-d_{j}$
- Maximum lateness $L_{\text {max }}$

$$
L_{\max }=\max \left(L_{1}, \ldots, L_{n}\right)
$$

- Goal: maximum lateness minimization
- Example:

$$
\begin{aligned}
& L_{\text {max }}=\max \left(L_{1}, L_{2}, L_{3}\right)= \\
& =\max \left(C_{1}-d_{1}, C_{2}-d_{2}, C_{3}-d_{3}\right)= \\
& =\max (4-8,16-14,10-10)= \\
& =\max (-4,2,0)=2
\end{aligned}
$$

Optimization: tardiness $\gamma^{[\text {Racisis] }}$

- Job tardiness $j: T_{j}=\max \left(C_{j}-d_{j}, 0\right)$
- Total tardiness

$$
\sum_{j=1}^{n} T_{j}
$$

- Goal: total tardiness minimization
- Example: $T_{1}+T_{2}+T_{3}=$

$$
\begin{array}{lc}
= & \max \left(C_{1}-d_{1}, 0\right)+\max \left(C_{2}-d_{2}, 0\right)+\max \left(C_{3}-d_{3}, 0\right)= \\
= & \max (4-8,0)+\max (16-14,0)+\max (10-10,0)= \\
= & 0+2+0=2
\end{array}
$$

- Total weighted tardiness

$$
\sum_{j=1}^{n} w_{j} T_{j}
$$

Criteria Comparison $\gamma^{[\text {Rudi3] }}$

Tardiness

In practice

Constructive vs. local methods ${ }^{[R u d 13]}$

- Constructive methods

- Start with the empty schedule
- Add step by step other jobs to the schedule so that the schedule remains consistent
- Local search
- Start with a complete non-consistent schedule
- trivial: random generated
- Try to find a better "similar" schedule by local modifications.
- Schedule quality is evaluated using optimization criteria
- ex. makespan
- optimization criteria assess also schedule consistency
- ex. a number of vialoted precedence constraints

- Hybrid approaches

- combinations of both methods
(1) Initialization
- $k=0$
- Select an initial schedule S_{0}
- Record the current best schedule: $S_{\text {best }}=S_{0}{\text { a } \text { cost }_{\text {best }}}=F\left(S_{0}\right)$

(2) Select and update
- Select a schedule from neighborhood: $S_{k+1} \in N\left(S_{k}\right)$
- if no element $N\left(S_{k}\right)$ satisfies schedule acceptance criterion then the algorithms finishes
- if $F\left(S_{k+1}\right)<\operatorname{cost}_{\text {best }}$ then $S_{\text {best }}=S_{k+1}$ a $\operatorname{cost}_{\text {best }}=F\left(S_{k+1}\right)$
(3) Finish
- if the stop constraints are satisfied then the algorithms finishes
- otherwise $k=k+1$ and continue with step 2.

Single machine + nonpreemptive jobs ${ }^{[\text {Rudis] }}$

- Schedule representation

- permutations n jobs
- example with six jobs: $1,4,2,6,3,5$

- Neighborhood definition

- pairwise exchange of neighboring jobs
- $n-1$ possible schedules in the neighborhood
- example: $1,4,2,6,3,5$ is modified to $1,4,2,6,5,3$
- or select an arbitrary job from the schedule and place it to an arbitrary position
- $\leqslant n(n-1)$ possible schedules in the neighborhood
- example: from $1,4,2,6,3,5$ we select randomly 4 and place it somewhere else: $1,2,6,3,4,5$

Criteria for Schedule Selection ${ }^{\text {[Ruais] }}$

- Criteria for schedule selection

- Criterion for schedule acceptance/refuse

- The main difference among a majority of methods
- to accept a better schedule all the time?
- to accept even worse schedule sometimes?
- methods
- probabilistic
- random walk: with a small probability (ex. 0.01) a worse schedule is accepted
- simulated annealing
- deterministic
- tabu search: a tabu list of several last state/modifications that are not allowed for the following selection is maintained

Tabu Search ${ }^{[\text {Rud } 13]}$

- Deterministic criterion for schedule acceptance/refuse
- Tabu list of several last schedule modifications is maintained
- each new modification is stored on the top of the tabu list
- ex. of a store modification: exchange of jobs j and k
- tabu list $=$ a list of forbidden modifications
- the neighborhood is constrained over schedules, that do not require a change in the tabu list
- a protection against cycling
- example of a trivial cycling:
the first step: exchange jobs 3 and 4 , the second step: exchange jobs 4 and 3
- a fixed length of the list (often: 5-9)
- the oldest modifications of the tabu list are removed
- too small length: cycling risk increases
- too high length: search can be too constrained

- Aspiration criterion

- determines when it is possible to make changes in the tabu list
- ex. a change in the tabu list is allowed if $F\left(S_{\text {best }}\right)$ is improved.

Tabu Search Algorithm ${ }^{\text {[Rudis] }}$

(1) $\cdot k=1$

- Select an initial schedule S_{1} using a heuristics, $S_{\text {best }}=S_{1}$
(2) Choose $S_{c} \in N\left(S_{k}\right)$
- If the modification $S_{k} \rightarrow S_{c}$ is forbidden because it is in the tabu list then continue with step 2
(3) - If the modification $S_{k} \rightarrow S_{c}$ is not forbidden by the tabu list then $S_{k+1}=S_{c}$,
store the reverse change to the top of the tabu list move other positions in the tabu list one position lower remove the last item of the tabu list
- if $F\left(S_{c}\right)<F\left(S_{\text {best }}\right)$ then $S_{\text {best }}=S_{c}$
(4) $\bullet k=k+1$
- if a stopping condition is satisfied then finish otherwise continue with step 2.

Example: tabu list ${ }^{\text {[Rudis] }}$

A schedule problem with $1\left|d_{j}\right| \sum w_{j} T_{j}$

- remind: $T_{j}=\max \left(C_{j}-d_{j}, 0\right)$

úlohy	1	2	3	4
p_{j}	10	10	13	4
d_{j}	4	2	1	12
w_{j}	14	12	1	12

- Neighborhood: all schedules obtained by pair exchange of neighbor jobs
- Schedule selection from the neighborhood: select the best schedule
- Tabu list: pairs of jobs (j, k) that were exchanged in the last two modifications
- Apply tabu search for the initial solution (2, 1, 4, 3)
- Perform four iterations

jobs	1	2	3	4
p_{j}	10	10	13	4
d_{j}	4	2	1	12
w_{j}	14	12	1	12

$S_{1}=(2,1,4,3)$
$F\left(S_{1}\right)=\sum w_{j} T_{j}=12 \cdot 8+14 \cdot 16+12 \cdot 12+1 \cdot 36=500=F\left(S_{\text {best }}\right)$
$F(1,2,4,3)=480$
$F(2, \underline{4}, \underline{1}, 3)=436=F\left(S_{\text {best }}\right)$
$F(2,1,3,4)=652$
Tabu list: $\{(1,4)\}$

$S_{2}=(2,4,1,3), F\left(S_{2}\right)=436$	$S_{3}=(4,2,1,3), F\left(S_{3}\right)=460$
$F(\underline{4}, \underline{2}, 1,3)=460$	$F(2,4,1,3)(=436)$ tabu!
$F(2,1,4,3)(=500)$ tabu!	$F(4, \underline{1}, \underline{2}, 3)=440$
$F(2,4,3,1)=608$	$F(4,2,3,1)=632$
Tabu list: $\{(2,4),(1,4)\}$	Tabu list: $\{(2,1),(2,4)\}$

jobs	1	2	3	4
p_{j}	10	10	13	4
d_{j}	4	2	1	12
w_{j}	14	12	1	12

$S_{3}=(4,2,1,3), F\left(S_{3}\right)=460$
$F(2,4,1,3)(=436)$ tabu!
$F(4, \underline{1}, \underline{2}, 3)=440$
$F(4,2,3,1)=632$
Tabu list: $\{(2,1),(2,4)\}$
$S_{4}=(4,1,2,3), F\left(S_{4}\right)=440$
$F(\underline{1}, 4,2,3)=408=F\left(S_{\text {best }}\right)$
$F(4,2,1,3)(=460)$ tabu!
$F(4,1,3,2)=586$
Tabu list: $\{(4,1),(2,1)\}$
$F\left(S_{\text {best }}\right)=408$

Literatura |

Tim Nieberg.
Lecture course "scheduling".
http://www.or.uni-bonn.de/lectures/ss10/sched10.html, July 2010.

Stuart J. Russell and Peter Norvig.
Artificial Intelligence, A Modern Approach.
Pre, third edition, 2010.Hana Rudová.
PA167 Rozvrhování, lecture notes, in Czech.
http://www.fi.muni.cz/ hanka/rozvrhovani/, March 2013.

