Scheduling

Radek Mařík

FEE CTU, K13132

April 15, 2014

Radek Mařík (marikr@fel.cvut.cz)

Scheduling

April 15, 2014 1 / 43

Obsah

Introduction to Scheduling

- Methodology Overview
- Real Problem Examples
- Terminology

2 Classification of Scheduling Problems

- Machine environment
- Job Characteristics
- Optimization

3 Local Search Methods

- General
- Tabu Search

Time, schedules, and resources [RN10]

- Classical planning representation
 - What to do
 - What order
- Extensions
 - How long an action takes
 - When it occurs
- Scheduling
 - Temporal constraints,
 - Resource contraints.
- Examples
 - Airline scheduling,
 - Which aircraft is assigned to which fligths
 - Departure and arrival time,
 - A number of employees is limited.
 - An aircraft crew, that serves during one flight, cannot be assigned to another flight.

Radek Mařík (marikr@fel.cvut.cz)	Scheduling	April 15, 2014	4 / 43

Introduction to Scheduling Methodology Overview

General Approach [Rud13]

Introduction

• Graham's classification of scheduling problems

General solving methods

- Exact solving method
 - Branch and bound methods
- Heuristics
 - dispatching rules
 - beam search
 - Iocal search:
 - simulated annealing, tabu search, genetic algorithms
- Mathematical programming: formulation
 - linear programming
 - integer programming
- Constraing satisfaction programming

- **Project planning:** project representation, critical path, time and cost trading, working force
- Scheduling: dispatching rules, branch and bound method, beam search,
- Scheduling in manufacturing: line with flexible time, with fixed time, with parallel working stations.
- Reservations: interval scheduling, reservation system with reserves.
- **Timetabling:** scheduling with operators, scheduling with work force.
- Scheduling of employees: free day scheduling, work shift scheduling, cyclic shift scheduling.
- University scheduling: theory and practice

Schedule:

• determined by tasks assignments to given times slots using given resources, where the tasks should be performed

Complete schedule:

• all tasks of a given problem are covered by the schedule

Partial schedule:

• some tasks of a given problem are not resolved/assigned

Consistent schedule:

- a schedule in which all constraints are satisfied w.r.t. resource and tasks, e.g.
 - at most one tasks is performed on a signel machine with a unit capacity

Consistent complete schedule vs. consistent partial schedule

Optimal schedule:

- the assigments of tasks to machines is optimal w.r.t. to a given optimization criterion, e.g..
 - min C_{max} : makespan (completion time of the last task) is minimum

Terminology of Scheduling [Rud13]

Scheduling

concerns optimal allocation or assignment of resources, to a set of tasks or activities over time

- limited amount of resources,
- gain maximization given constraints
- Machines M_i , $i = 1, \ldots, m$
- Jobs $J_j, j = 1, ..., n$
- (*i*, *j*) an operation or processing of jobs *j* on machine *i*
 - a job can be composed from several operations,
 - example: job 4 has three operations with non-zero processing time (2,4),(3,4),(6,4), i.e. it is performed on machines 2,3,6

- Static parameters of job
 - processing time p_{ij}, p_j:
 processing time of job *j* on machine *i*
 - release date of j r_j:
 earliest starting time of jobs j
 - due date d_j: committed completion time of job j (preference)
 - vs. deadline:
 time, when job j must be finised at latest (requirement)
 - weight w_j: importance of job j relatively to other jobs in the system
- Dynamic parameters of job
 - start time S_{ij}, S_j:
 time when job j is started on machine i
 - **completion time** *C_{ij}*, *C_j*: time when job *j* execution on machine *i* is finished

Introduction to Scheduling Real Problem Examples

Example: bike assembly [Rud13]

- 10 jobs with given processing time
- Precedence constraints
 - a given job can be executed after a specified subset of jobs
- Non-preemptive jobs
 - jobs cannot be interrupted
- Optimization criteria
 - makespan minimization
 - worker number minimization

Radek Mařík (marikr@fel.cvut.cz)	Scheduling	April 15, 2014	11 / 43

Introduction to Scheduling Real Problem Examples

Example: bike assembly [Rud13]

- 10 jobs with given processing time
- Precedence constraints
 - a given job can be executed after a specified subset of jobs
- Non-preemptive jobs
 - jobs cannot be interrupted
- Optimization criteria
 - makespan minimization
 - worker number minimization

AR

Introduction to Scheduling Real Problem Examples

Scheduling Examples [Rud13]

- Scheduling of semiconductor manufacturing • a large amount of heterogenous products, different amounts of produced items, machine setup cost, required processing time guarantees Scheduling of supply chains • ex. a forest region \rightarrow paper production \rightarrow products from paper \rightarrow distribution centers \rightarrow end user manufacturing cost, transport, storage minimization, Scheduling of paper production • input - wood, output - paper roles, expensive machines, different sorts of papers, storage minimization Car assembly lines • manufacturing of different types of cars with different equipment,
 - throughput optimization, load balancing
 - Lemonade filling into bottles
 - 4 flavors, each flavor has its own filling time,
 - cycle time minimization, one machine

Radek Mařík (marikr@fel.cvut.cz)	Scheduling	April 15, 2014	13 / 43

Introduction to Scheduling Real Problem Examples

Scheduling Examples II [Rud13]

- Scheduling of hospital nurses
 - different numbers of nurses in working days and weekends,
 - weaker requirements for night shift rostering,
 - assignment of nurses to shifts, requirement satisfaction, cost minimization

Grid computing scheduling

- clusters, supercomputers, desktops, special devices,
- scheduling of computation jobs and related resources,
- scheduling of data transfers and data processing
- University scheduling
 - Time and rooms selection for subject education at universities
 - constraints given for subject placement,
 - preference requirements for time and room optimization,
 - minimization of overlapping subjects for all students,

N N N

Scheduling vs. timetabling [Rud13]

Scheduling ... scheduling/planning

- resource allocation for given constraints over objects placed in time-space so that total cost of given resources is minimized,
- focus is given on object ordering, precedence conditions
 - ex. manufacturing scheduling: operation ordering determination, time dependencies of operation is important,
- schedule: specifies space and time information

Timetabling

- resource allocation for given constraints over objects placed in time-space so that given criteria are met as much as possible,
- focus is given on time placement of objects
- time horizon is often given in advance (a number of scheduled slots)
 - ex. education timetabling: time and a place is assigned to subjects
- timetable: shows when and where events are performed.

Radek Mařík (marikr@fel.cvut.cz)

Scheduling

April 15, 2014

16 / 43

Introduction to Scheduling Terminology

Sequencing and Rostering [Rud13]

Sequencing

- for given constraints:
 - a construction of job order in which they will be executed
- sequence
 - an order in which jobs are executed
- ex. lemonade filling into bottles

Rostering

- resource allocation for given constraints into slots using patterns
- o roster
 - a list of person names, that determines what jobs are executed and when
- ex. a roster of hospital nurses, a roster of bus drivers

Graham's classification [Rud13, Nie10]

Graham's classification $\alpha |\beta| \gamma$

(Many) Scheduling problems can be described by a three field notation

- α : the machine environment
 - describes a way of job assingments to machines
- β: the job characteristics,
 - describes constraints applied to jobs
- γ : the objective criterion to be minimized
- complexity for combinations of scheduling problems

ly		
chines		
		N
Scheduling	April 15, 2014	19 / 43
	ly chines Scheduling	ly chines Scheduling April 15, 2014

Machine Environment α [Rud13, Nie10]

- Single machine $(\alpha = 1)$: $1 | \dots | \dots$
- Identical parallel machines *Pm*
 - *m* identical machines working in parallel with the same speed
 - each job consist of a single operation,
 - each job processed by any of the machines m for p_j time units
- Uniform parallel machines *Qm*
 - processing time of job j on machine i propotional to its speed v_i
 - $p_{ij} = p_j / v_i$
 - ex. several computers with processor different speed
- Unrelated parallel machines *Rm*
 - machine have different speed for different jobs
 - machine *i* process job *j* with speed *v*_{ij}
 - $p_{ij} = p_j / v_{ij}$
 - ex. vector computer computes vector tasks faster than a classical PC

Shop Problems [Rud13, Nie10]

Shop Problems

- each tasks is executed sequentially on several machine
 - job *j* consists of several operations (*i*, *j*)
 - operation (i, j) of jobs j is performed on machine i withing time p_{ij}
 - ex: job j with 4 operations (1, j), (2, j), (3, j), (4, j)

Machine 2 Machine 4

- Shop problems are classical studied in details in operations research
- Real problems are ofter more complicated
 - utilization of knowledge on subproblems or simplified problems in solutions

				1 1913
Radek Mařík (marikr@fel.cvut.cz)	Schee	duling	April 15, 2014	21 / 43
Classification of So	heduling Problems	Machine environme	nt	
Flow shop $lpha$ [Rud13, Nie:	10]			

• Flow shop Fm

- *m* machines in series
- each job has to be processed on each machine
- all jobs follow the same route:
 - first machine 1, then machine 2, ...
- if the jobs have to be processed in the same order on all machines, we have a permutation flow shop

• Flexible flow shop FFs

- a generalizatin of flow shop problem
- *s* phases, a set of parallel machines is assigned to each phase
- i.e. flow shop with s parallel machines
- each job has to be processed by all phase in the same order
 - first on a machine of phase 1, then on a machine of phase 2, ...
- the task can be performed on any machine assigned to a given phase

N-28

Open shop & job shop [Rud13, Nie10]

• Job shop Jm

- flow shop with *m* machines
- each job has its individual predetermined route to follow
 - processing time of a given jobs might be zero for some machines
- $(i, j) \rightarrow (k, j)$ specifies that job j is performed on machine i earlier than on machine k
- example: $(2, j) \rightarrow (1, j) \rightarrow (3, j) \rightarrow (4, j)$

• Open shop Om

- flow shop with *m* machines
- processing time of a given jobs might be zero for some machines
- no routing restrictions (this is a scheduling decision)

• Precedence constraints prec

- linear sequence, tree structure
- for jobs *a*, *b* we write $a \rightarrow b$, with meaning of $S_a + p_a \leq S_b$
- example: bike assembly

• Preemptions *pmtn*

• a job with a higher priority interrupts the current job

• Machine suitability M_i

- a subset of machines M_j , on which job j can be executed
- room assignment: appropriate size of the classroom
- games: a computer with a HW graphical library
- Work force constraints W, W_{ℓ}
 - another sort of machines is introduced to the problem
 - machines need to be served by operators and jobs can be performed only if operators are available, operators W
 - different groups of operators with a specific qualification can exist, W_{ℓ} is a number of operators in group ℓ

Constraints (continuation) β

Routing constraints

- determine on which machine jobs can be executed,
- an order of job execution in shop problems
 - job shop problem: an operation order is given in advance
 - open shop problem: a route for the job is specified during scheduling

[Rud13, Nie10]

• Setup time and cost *s*_{ijk}, *c*_{ijk}, *s*_{ik}, *c*_{ik}

- depend on execution sequence
- s_{ijk} time for execution of job k after job j on machine i
- c_{ijk} cost of execution of job k after job j on machine i
- *s_{jk}*, *c_{jk}* time/cost independent on machine
- examples
 - lemonade filling into bottles
 - travelling salesman problem $1|s_{jk}|C_{max}$

Classification of Scheduling Problems Optimization

Optimization: Lateness γ [Rud13]

- Lateness of job *j*: $L_{max} = C_j d_j$
- Maximum lateness L_{max}

$$L_{max} = max(L_1, \ldots, L_n)$$

- Goal: maximum lateness minimization
- Example:

Radek Mařík (marikr@fel.cvut.cz)

Scheduling

Classification of Scheduling Problems Optimization

Optimization: tardiness γ [Rud13]

• Job tardiness
$$j$$
: $T_j = max(C_j - d_j, 0)$

- Goal: total tardiness minimization
- Example: $T_1 + T_2 + T_3 =$

$$= \max(C_1 - d_1, 0) + \max(C_2 - d_2, 0) + \max(C_3 - d_3, 0) =$$

=
$$\max(4 - 8, 0) + \max(16 - 14, 0) + \max(10 - 10, 0) =$$

=
$$0 + 2 + 0 = 2$$

Total weighted tardiness

$$\sum_{j=1}^{n} w_j T_j$$

Goal: total weighted tardiness minimization
 Radek Mařík (marikr@fel.cvut.cz)
 Scheduling

April 15, 2014

29 / 43

Classification of Scheduling Problems Optimization

Criteria Comparison γ [Rud13]

Local Search Methods General <u>Constructive vs. local methods</u> [Rud13]

Constructive methods

- Start with the empty schedule
- Add step by step other jobs to the schedule so that the schedule remains consistent

Local search

- Start with a complete non-consistent schedule
 - trivial: random generated
- Try to find a better "similar" schedule by local modifications.
- Schedule quality is evaluated using optimization criteria
 - ex. makespan
- optimization criteria assess also schedule consistency
 - ex. a number of vialoted precedence constraints
- Hybrid approaches
 - combinations of both methods

Local Search Methods General

Local Search Algorithm [Rud13]

- *k* = 0
- Select an initial schedule S_0
- Record the current best schedule: $S_{best} = S_0$ a $cost_{best} = F(S_0)$
- **2** Select and update
 - Select a schedule from neighborhood: $S_{k+1} \in N(S_k)$
 - if no element $N(S_k)$ satisfies schedule acceptance criterion then the algorithms finishes
 - if $F(S_{k+1}) < cost_{best}$ then $S_{best} = S_{k+1}$ a $cost_{best} = F(S_{k+1})$

6 Finish

- if the stop constraints are satisfied then the algorithms finishes
- otherwise k = k + 1 and continue with step 2.

Radek Mařík (marikr@fel.cvut.cz)	Scheduling	April 15, 2014	34 / 43
	al Search Methods General		

Single machine + nonpreemptive jobs [Rud13]

• Schedule representation

- permutations *n* jobs
- example with six jobs: 1, 4, 2, 6, 3, 5

• Neighborhood definition

- pairwise exchange of neighboring jobs
 - n-1 possible schedules in the neighborhood
 - example: 1, 4, 2, 6, 3, 5 is modified to 1, 4, 2, 6, 5, 3
- or select an arbitrary job from the schedule and place it to an arbitrary position
 - $\leq n(n-1)$ possible schedules in the neighborhood
 - example: from 1, 4, 2, 6, 3, 5 we select randomly 4 and place it somewhere else: 1, 2, 6, 3, 4, 5

N. K.

Criteria for Schedule Selection [Rud13]

- Criteria for schedule selection
 - Criterion for schedule acceptance/refuse
- The main difference among a majority of methods
 - to accept a better schedule all the time?
 - to accept even worse schedule sometimes?
- methods
 - probabilistic
 - random walk: with a small probability (ex. 0.01) a worse schedule is accepted
 - simulated annealing
 - deterministic
 - tabu search: a tabu list of several last state/modifications that are not allowed for the following selection is maintained

				A.S.
Radek Mařík (marikr@fel.cvut.cz)	Sched	luling	April 15, 2014	36 / 43
Loc	al Search Methods	Tabu Search		

Tabu Search [Rud13]

- Deterministic criterion for schedule acceptance/refuse
- Tabu list of several last schedule modifications is maintained
 - each new modification is stored on the top of the tabu list
 - ex. of a store modification: exchange of jobs j and k
 - tabu list = a list of forbidden modifications
 - the neighborhood is constrained over schedules, that do not require a change in the tabu list
 - a protection against cycling
 - example of a trivial cycling: the first step: exchange jobs 3 and 4, the second step: exchange jobs 4 and 3
 - a fixed length of the list (often: 5-9)
 - the oldest modifications of the tabu list are removed
 - too small length: cycling risk increases
 - too high length: search can be too constrained
- Aspiration criterion
 - determines when it is possible to make changes in the tabu list
 - ex. a change in the tabu list is allowed if $F(S_{best})$ is improved.

Tabu Search Algorithm [Rud13]

 $\bullet \ k=1$

2

3

- Select an initial schedule S_1 using a heuristics, $S_{best} = S_1$
- Choose $S_c \in N(S_k)$
 - If the modification $S_k \to S_c$ is forbidden because it is in the tabu list then continue with step 2
- If the modification $S_k \to S_c$ is not forbidden by the tabu list then $S_{k+1} = S_c$,

store the reverse change to the top of the tabu list move other positions in the tabu list one position lower remove the last item of the tabu list

- if $F(S_c) < F(S_{best})$ then $S_{best} = S_c$
- $\bullet \quad \mathbf{k} = \mathbf{k} + \mathbf{1}$
 - if a stopping condition is satisfied then finish otherwise continue with step 2.

Radek Mařík (marikr@fel.cvut.cz) Scheduling

Local Search Methods Tabu Search

Example: tabu list [Rud13]

A schedule p	proble	m wit	th 1 a	$ d_j \sum w_j T_j$		
• remind:	$T_j =$	= max	$x(C_j -$	$-d_{j},0)$		
úlohy	1	2	3	4		
pj	10	10	13	4		
d_j	4	2	1	12		
Wj	14	12	1	12		
 Neighborhood: all schedules obtained by pair exchange of neighbor jobs 						
• Schedule selection from the neighborhood: select the best schedule						
 Tabu list: pairs of jobs (j, k) that were exchanged in the last two modifications. 						

- Apply tabu search for the initial solution (2, 1, 4, 3)
- Perform four iterations

April 15, 2014

39 / 43

Local Search Methods Tabu Search								
	pic.	Lab	u no					
jobs	1	2	3	4				
p _i	10	10	13	4	_			
d_i	4	2	1	12				
w _j	14	12	1	12				
$S_1 = (1)$	2,1,4	1, 3)						
$F(S_1)$	$= \sum$	$w_i T_i$	= 12	<u>2 · 8</u> -	$+ 14 \cdot 16 +$	$12 \cdot 12 + 1 \cdot 3$	$B6 = 500 = F(S_{best})$)
F(1, 2,	4, 3)	= 48	30					
F(2, 4,	1.3)	= 43	36 —	$F(S_h$	est)			
F(2, 1,	3.4)	= 65	52	(-0				
Tabu li	ist·{	$(1 \ 4)$	}					
	ιστ. [(±,)	J					
$S_2 =$	(2,4	, 1, 3)	, F(S	$(i_2) =$	436	$S_3 = (4, 2, $	1, 3), $F(S_3) = 460$	
$F(\underline{4},\underline{2})$	2, 1, 3	(3) = 4	160			F(2, 4, 1, 3)	(= 436) tabu!	
F(2, 1)	1,4,3	(= !)	500)	tabu	ļ	F(4, 1, 2, 3)) = 440	
F(2, 4)	4, 3, 1	$\hat{)} = 0$	508			F(4, 2, 3, 1)) = 632	
Tabu	list:	{(2, 4	+),(1,	4)}		Tabu list: {	[(2, 1), (2, 4)]	<u>A</u>
Radek Ma	řík (ma	rikr@fel	.cvut.cz))	Scheo	luling	April 15, 2014	41 / 43

	Local Search Methods	Tabu Search
Example:	tabu list - solution l	[Rud13]

jobs	1	2	3	4
pj	10	10	13	4
d_j	4	2	1	12
Wj	14	12	1	12

 $S_3 = (4, 2, 1, 3), F(S_3) = 460$ F(2, 4, 1, 3)(= 436) tabu! $F(4, \underline{1}, \underline{2}, 3) = 440$ F(4, 2, 3, 1) = 632Tabu list: $\{(2, 1), (2, 4)\}$ $S_4 = (4, 1, 2, 3), F(S_4) = 440$ $F(\underline{1}, \underline{4}, 2, 3) = 408 = F(S_{best})$ F(4, 2, 1, 3)(= 460) tabu! F(4, 1, 3, 2) = 586Tabu list: {(4, 1), (2, 1)}

 $F(S_{best}) = 408$

ARE

Local Search Methods Tabu Search

Literatura I

Tim Nieberg.

Lecture course "scheduling". http://www.or.uni-bonn.de/lectures/ss10/sched10.html, July 2010.

Stuart J. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Pre, third edition, 2010.

Hana Rudová.

PA167 Rozvrhování, lecture notes, in Czech. http://www.fi.muni.cz/ hanka/rozvrhovani/, March 2013.

Scheduling

April 15, 2014

43 / 43