Scheduling

Radek Mařík

FEE CTU, K13132

April 28, 2015

Outline

- Introduction to Scheduling
 - Methodology Overview
- Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

Outline

- Introduction to Scheduling
 - Methodology Overview
- 2 Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- 3 Local Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

Time, schedules, and resources

- Classical planning representation
 - What to do
 - What order
- Extensions
 - How long an action takes
 - When it occurs
- Scheduling
 - Temporal constraints,
 - Resource contraints.
- Examples
 - Airline scheduling,
 - Which aircraft is assigned to which flights
 - Departure and arrival time,
 - A number of employees is limited.
 - An aircraft crew, that serves during one flight, cannot be assigned to another flight.

General Approach [Rud13]

Introduction

Graham's classification of scheduling problems

General solving methods

- Exact solving method
 - Branch and bound methods
- Heuristics
 - dispatching rules
 - beam search
 - local search: simulated annealing, tabu search, genetic algorithms
- Mathematical programming: formulation
 - linear programming
 - integer programming
- Constraing satisfaction programming

Schedule [Rud13]

Schedule:

 determined by tasks assignments to given times slots using given resources, where the tasks should be performed

Complete schedule:

all tasks of a given problem are covered by the schedule

Partial schedule:

some tasks of a given problem are not resolved/assigned

Consistent schedule:

- a schedule in which all constraints are satisfied w.r.t. resource and tasks, e.g.
 - at most one tasks is performed on a signel machine with a unit capacity

 $Consistent\ complete\ schedule\ vs.\ consistent\ partial\ schedule$

Optimal schedule:

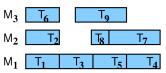
- the assignments of tasks to machines is optimal w.r.t. to a given optimization criterion, e.g..
 - min C_{max} : makespan (completion time of the last task) is minimum

Terminology of Scheduling [Rud13]

Scheduling

concerns optimal allocation or assignment of resources, to a set of tasks or activities over time

- limited amount of resources,
- gain maximization given constraints
- Machines M_i , i = 1, ..., m
- Jobs J_j , j = 1, ..., n
- (i, j) an operation or processing of jobs j on machine i
 - a job can be composed from several operations,
 - example: job 4 has three operations with non-zero processing time (2,4),(3,4),(6,4), i.e. it is performed on machines 2,3,6



Static and dynamic parameters of jobs [Rud13]

- Static parameters of job
 - processing time p_{ij}, p_j:
 processing time of job j on machine i
 - release date of j r_j:
 earliest starting time of jobs j
 - due date d_j: committed completion time of job j (preference)
 - vs. deadline: time, when job j must be finished at latest (requirement)
 - weight w_j: importance of job j relatively to other jobs in the system
- Dynamic parameters of job
 - start time S_{ij}, S_j:
 time when job j is started on machine i
 - completion time C_{ij}, C_j:
 time when job j execution on machine i is finished

Static and dynamic parameters of jobs [Rud13]

- Static parameters of job
 - processing time p_{ij}, p_j:
 processing time of job j on machine i
 - release date of j r_j:
 earliest starting time of jobs j
 - due date d_j: committed completion time of job j (preference)
 - vs. deadline: time, when job j must be finished at latest (requirement)
 - weight w_j: importance of job j relatively to other jobs in the system
- Dynamic parameters of job
 - **start time** S_{ij} , S_j : time when job j is started on machine i
 - completion time C_{ij}, C_j:
 time when job j execution on machine i is finished

Outline

- Introduction to Scheduling
 - Methodology Overview
- Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- 3 Local Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

Graham's classification $\alpha |\beta| \gamma$

(Many) Scheduling problems can be described by a three field notation

- α: the machine environment
 - describes a way of job assingments to machines
- β: the job characteristics,
 - describes constraints applied to jobs
- γ: the objective criterion to be minimized
- complexity for combinations of scheduling problems

Examples

- $P3|prec|C_{max}$: bike assembly
- $Pm|r_i| \sum w_i C_i$: parallel machines

Graham's classification $\alpha |\beta| \gamma$

(Many) Scheduling problems can be described by a three field notation

- α: the machine environment
 - describes a way of job assingments to machines
- β: the job characteristics,
 - describes constraints applied to jobs
- \bullet γ : the objective criterion to be minimized
- complexity for combinations of scheduling problems

Examples

- $P3|prec|C_{max}$: bike assembly
- $Pm|r_j| \sum w_j C_j$: parallel machines

Machine Environment α [Rud13, Nie10]

- Single machine $(\alpha = 1)$: $1 | \dots | \dots$
- - m identical machines working in parallel with the same speed
 - each job consist of a single operation,
 - each job processed by any of the machines m for p; time units
- Uniform parallel machines Qm
 - processing time of job j on machine i propotional to its speed v_i
 - $p_{ii} = p_i/v_i$
 - ex. several computers with processor different speed
- Unrelated parallel machines Rm
 - machine have different speed for different jobs
 - machine i process job i with speed vii
 - $p_{ii} = p_i/v_{ii}$
 - ex. vector computer computes vector tasks faster than a classical PC

Machine Environment α [Rud13, Nie10]

- Single machine $(\alpha = 1)$: $1 | \dots | \dots$
- Identical parallel machines Pm
 - m identical machines working in parallel with the same speed
 - each job consist of a single operation,
 - each job processed by any of the machines m for p_i time units
- Uniform parallel machines Qm
 - processing time of job j on machine i propotional to its speed v_i
 - $p_{ii} = p_i/v_i$
 - ex. several computers with processor different speed
- Unrelated parallel machines Rm
 - machine have different speed for different jobs
 - machine i process job j with speed v_{ij}
 - $p_{ij} = p_j/v_{ij}$
 - ex. vector computer computes vector tasks faster than a classical PC

Machine Environment α [Rud13, Nie10]

- Single machine $(\alpha = 1)$: $1 | \dots | \dots$
- Identical parallel machines Pm
 - m identical machines working in parallel with the same speed
 - each job consist of a single operation,
 - each job processed by any of the machines m for p_i time units
- Uniform parallel machines Qm
 - processing time of job j on machine i propotional to its speed v_i
 - $p_{ij} = p_j/v_i$
 - ex. several computers with processor different speed
- Unrelated parallel machines Rm
 - machine have different speed for different jobs
 - machine i process job j with speed v_{ij}
 - $p_{ij} = p_j/v_{ij}$
 - ex. vector computer computes vector tasks faster than a classical PC

Machine Environment $\alpha^{\text{[Rud13, Nie10]}}$

- Single machine $(\alpha = 1)$: $1 | \dots | \dots$
- Identical parallel machines Pm
 - m identical machines working in parallel with the same speed
 - each job consist of a single operation,
 - each job processed by any of the machines m for p_i time units
- Uniform parallel machines Qm
 - processing time of job j on machine i propotional to its speed v_i
 - $p_{ij} = p_j/v_i$
 - ex. several computers with processor different speed
- Unrelated parallel machines Rm
 - machine have different speed for different jobs
 - machine i process job j with speed v_{ij}
 - $p_{ij} = p_j/v_{ij}$
 - ex. vector computer computes vector tasks faster than a classical PC

Shop Problems [Rud13, Nie10]

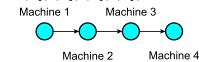
Shop Problems

- each tasks is executed sequentially on several machine
 - job j consists of several operations (i, j)
 - operation (i,j) of jobs j is performed on machine i withing time p_{ij}
 - ex: job j with 4 operations (1, j), (2, j), (3, j), (4, j)
- Shop problems are classical studied in details in operations research
- Real problems are ofter more complicated
 - utilization of knowledge on subproblems or simplified problems in solutions

Shop Problems [Rud13, Nie10]

Shop Problems

- each tasks is executed sequentially on several machine
 - job j consists of several operations (i, j)
 - operation (i, j) of jobs j is performed on machine i withing time p_{ij}
 - ex: job j with 4 operations (1, j), (2, j), (3, j), (4, j)



- Shop problems are classical studied in details in operations research
- Real problems are ofter more complicated
 - utilization of knowledge on subproblems or simplified problems in solutions

Flow shop α [Rud13, Nie10]

Flow shop Fm

- m machines in series
- each job has to be processed on each machine
- all jobs follow the same route:
 - first machine 1, then machine 2, ...
- if the jobs have to be processed in the same order on all machines, we have a **permutation** flow shop

Flexible flow shop FFs

- a generalizatin of flow shop problem
- s phases, a set of parallel machines is assigned to each phase
- i.e. flow shop with s parallel machines
- each job has to be processed by all phase in the same order
 - first on a machine of phase 1, then on a machine of phase 2, ...
- the task can be performed on any machine assigned to a given phase

Open shop & job shop [Rud13, Nie10]

Job shop Jm

- flow shop with *m* machines
- each job has its individual predetermined route to follow
 - processing time of a given jobs might be zero for some machines
- $(i,j) \rightarrow (k,j)$ specifies that job j is performed on machine i earlier than on machine k
- example: $(2,j) \to (1,j) \to (3,j) \to (4,j)$

Open shop Om

- flow shop with *m* machines
- processing time of a given jobs might be zero for some machines
- no routing restrictions (this is a scheduling decision)

Outline

- Introduction to Scheduling
 - Methodology Overview
- 2 Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- 3 Local Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

Constraints β [Rud13, Nie10]

Precedence constraints prec

- linear sequence, tree structure
- for jobs a, b we write $a \to b$, with meaning of $S_a + p_a \leqslant S_b$
- example: bike assembly

Preemptions pmtn

- a job with a higher priority interrupts the current job
- Machine suitability M_i
 - a subset of machines M_i , on which job j can be executed
 - room assignment: appropriate size of the classroom
 - games: a computer with a HW graphical library
- Work force constraints W, W_ℓ
 - another sort of machines is introduced to the problem
 - ullet machines need to be served by operators and jobs can be performed only if operators are available, operators W
 - different groups of operators with a specific qualification can exist, W_ℓ is a number of operators in group ℓ

Constraints (continuation) β

Routing constraints

- determine on which machine jobs can be executed,
- an order of job execution in shop problems
 - job shop problem: an operation order is given in advance
 - open shop problem: a route for the job is specified during scheduling

Setup time and cost s_{ijk}, c_{ijk}, s_{jk}, c_{jk}

- depend on execution sequence
- s_{ijk} time for execution of job k after job j on machine i
- c_{ijk} cost of execution of job k after job j on machine i
- s_{ik} , c_{ik} time/cost independent on machine
- examples
 - lemonade filling into bottles
 - travelling salesman problem $1|s_{jk}|C_{max}$

April 28, 2015

Outline

- Introduction to Scheduling
 - Methodology Overview
- Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- 3 Local Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

• Makespan C_{max} : maximum completion time

$$C_{max} = max(C_1, \ldots, C_n)$$

- Example: $C_{max} = max\{1, 3, 4, 5, 8, 7, 9\} = 9$
- Goal: makespan minimization often
 - maximizes throughput
 - ensures uniform load of machines (load balancing)
 - example: $C_{max} = max\{1, 2, 4, 5, 7, 4, 6\} = 7$
 - It is a basic criterion that is used very often.

• Makespan C_{max}: maximum completion time

$$C_{max} = max(C_1, \ldots, C_n)$$

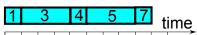
• Example: $C_{max} = max\{1, 3, 4, 5, 8, 7, 9\} = 9$

Resource 2

2

6

Resource 1



- Goal: makespan minimization often
 - maximizes throughput
 - ensures uniform load of machines (load balancing)
 - example: $C_{max} = max\{1, 2, 4, 5, 7, 4, 6\} = 7$
 - It is a basic criterion that is used very often.

Optimization: throughput and makespan γ [Rud13]

• Makespan C_{max}: maximum completion time

$$C_{max} = max(C_1, \ldots, C_n)$$

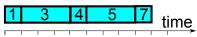
• Example: $C_{max} = max\{1, 3, 4, 5, 8, 7, 9\} = 9$

Resource 2

2

6

Resource 1



- Goal: makespan minimization often
 - maximizes throughput
 - ensures uniform load of machines (load balancing)
 - example: $C_{max} = max\{1, 2, 4, 5, 7, 4, 6\} = 7$

Resource 2

2

5

Resource 1

1 3 4 7

time

It is a basic criterion that is used very often.

Optimization: Lateness γ [Rud13]

- Lateness of job j: $L_{max} = C_j d_j$
- Maximum lateness L_{max}

$$L_{max} = max(L_1, \ldots, L_n)$$

- Goal: maximum lateness minimization
- Example:

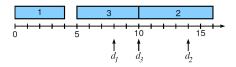
$$L_{max}$$
 = $max(L_1, L_2, L_3)$ =
 = $max(C_1 - d_1, C_2 - d_2, C_3 - d_3)$ =
 = $max(4 - 8, 16 - 14, 10 - 10)$ =
 = $max(-4, 2, 0)$ = 2

Optimization: Lateness γ [Rud13]

- Lateness of job j: $L_{max} = C_j d_j$
- Maximum lateness L_{max}

$$L_{max} = max(L_1, \ldots, L_n)$$

- Goal: maximum lateness minimization
- Example:



$$L_{max} = max(L_1, L_2, L_3) =$$

$$= max(C_1 - d_1, C_2 - d_2, C_3 - d_3) =$$

$$= max(4 - 8, 16 - 14, 10 - 10) =$$

$$= max(-4, 2, 0) = 2$$

Optimization: tardiness γ [Rud13]

- Job tardiness j: $T_j = max(C_j d_j, 0)$
- Total tardiness

$$\sum_{j=1}^{n} T_j$$

- Goal: total tardiness minimization
- Example: $T_1 + T_2 + T_3 =$ $= \max(C_1 d_1, 0) + \max(C_2 d_2, 0) + \max(C_3 d_3, 0) =$ $= \max(4 8, 0) + \max(16 14, 0) + \max(10 10, 0) =$ = 0 + 2 + 0 = 2
- Total weighted tardiness

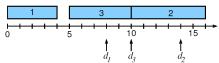
$$\sum_{j=1}^{n} w_j T_j$$

Goal: total weighted tardiness minimization

Optimization: tardiness γ [Rud13]

- Job tardiness j: $T_j = max(C_j d_j, 0)$
- Total tardiness

$$\sum_{j=1}^{n} T_{j}$$



- Goal: total tardiness minimization
- Example: $T_1 + T_2 + T_3 =$

$$= \max(C_1 - d_1, 0) + \max(C_2 - d_2, 0) + \max(C_3 - d_3, 0) =$$

$$= \max(4 - 8, 0) + \max(16 - 14, 0) + \max(10 - 10, 0) =$$

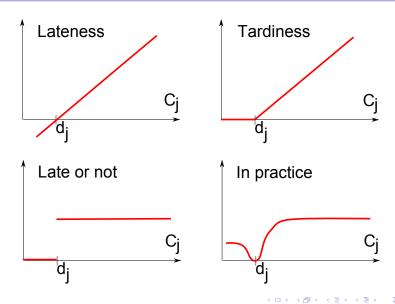
$$= 0 + 2 + 0 = 2$$

Total weighted tardiness

$$\sum_{j=1}^{n} w_j T_j$$

• Goal: total weighted tardiness minimization

Criteria Comparison γ [Rud13]



Outline

- Introduction to Scheduling
 - Methodology Overview
- 2 Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

23 / 48

[Rud13]

Constructive vs. local methods

Constructive methods

- Start with the empty schedule
- Add step by step other jobs to the schedule so that the schedule remains consistent

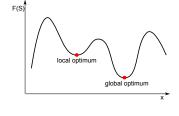
Local search

- Start with a complete non-consistent schedule
 - trivial: random generated
- Try to find a better "similar" schedule by local modifications.
- Schedule quality is evaluated using optimization criteria
 - ex. makespan
- optimization criteria assess also schedule consistency
 - ex. a number of vialoted precedence constraints
- Hybrid approaches
 - · combinations of both methods

Local Search Algorithm [Rud13]

Initialization

- k=0
- Select an initial schedule S_0
- Record the current best schedule: $S_{hest} = S_0$ a $cost_{hest} = F(S_0)$



Select and update

- Select a schedule from neighborhood: $S_{k+1} \in N(S_k)$
- if no element $N(S_k)$ satisfies schedule acceptance criterion then the algorithms finishes
- if $F(S_{k+1}) < cost_{best}$ then $S_{hest} = S_{k+1}$ a $cost_{hest} = F(S_{k+1})$

Finish

- if the stop constraints are satisfied then the algorithms finishes
- otherwise k = k + 1 and continue with step 2.

Single machine + nonpreemptive jobs [Rud13]

- Schedule representation
 - permutations n jobs
 - example with six jobs: 1, 4, 2, 6, 3, 5
- Neighborhood definition
 - pairwise exchange of neighboring jobs
 - n-1 possible schedules in the neighborhood
 - example: 1, 4, 2, 6, 3, 5 is modified to 1, 4, 2, 6, 5, 3
 - or select an arbitrary job from the schedule and place it to an arbitrary position
 - $\leq n(n-1)$ possible schedules in the neighborhood
 - example: from 1, 4, 2, 6, 3, 5 we select randomly 4 and place it somewhere else: 1, 2, 6, 3, 4, 5

Criteria for Schedule Selection [Rud13]

- Criteria for schedule selection
 - Criterion for schedule acceptance/refuse
- The main difference among a majority of methods
 - to accept a better schedule all the time?
 - to accept even worse schedule sometimes?
- methods
 - probabilistic
 - random walk: with a small probability (ex. 0.01) a worse schedule is accepted
 - simulated annealing
 - deterministic
 - tabu search: a tabu list of several last state/modifications that are not allowed for the following selection is maintained

April 28, 2015

Outline

- Introduction to Scheduling
 - Methodology Overview
- Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

[Rud13] Tabu Search

- Deterministic criterion for schedule acceptance/refuse
- Tabu list of several last schedule modifications is maintained.
 - each new modification is stored on the top of the tabu list
 - ex. of a store modification: exchange of jobs j and k
 - tabu list = a list of forbidden modifications
 - the neighborhood is constrained over schedules, that do not require a change in the tabu list
 - a protection against cycling
 - example of a trivial cycling: the first step: exchange jobs 3 and 4, the second step: exchange jobs 4 and 3
 - a fixed length of the list (often: 5-9)
 - the oldest modifications of the tabu list are removed
 - too small length: cycling risk increases
 - too high length: search can be too constrained
- Aspiration criterion
 - determines when it is possible to make changes in the tabu list
 - ex. a change in the tabu list is allowed if $F(S_{best})$ is improved.

Tabu Search Algorithm [Rud13]

- **1** k = 1
 - Select an initial schedule S_1 using a heuristics, $S_{best} = S_1$
- Choose $S_c \in N(S_k)$
 - If the modification $S_k \to S_c$ is forbidden because it is in the tabu list then continue with step 2
- If the modification $S_k \to S_c$ is not forbidden by the tabu list then $S_{k+1} = S_c$, store the reverse change to the top of the tabu list move other positions in the tabu list one position lower remove the last item of the tabu list
 - if $F(S_c) < F(S_{best})$ then $S_{best} = S_c$
- k = k + 1
 - if a stopping condition is satisfied then finish otherwise continue with step 2.

Example: tabu list [Rud13]

A schedule problem with $1|d_i| \sum w_i T_i$

- Neighborhood: all schedules obtained by pair exchange of neighbor iobs
- Schedule selection from the neighborhood: select the best schedule
- Tabu list: pairs of jobs (j, k) that were exchanged in the last two modifications
- Apply tabu search for the initial solution (2, 1, 4, 3)
- Perform four iterations

Example: tabu list - solution I

jobs	1	2	3	4
pj	10	10	13	4
d_j	4	2	1	12
w_j	14	12	1	12

$$S_1 = (2, 1, 4, 3)$$

$$F(S_1) = \sum_{j} w_j T_j = 12 \cdot 8 + 14 \cdot 16 + 12 \cdot 12 + 1 \cdot 36 = 500 = F(S_{best})$$

$$F(1, 2, 4, 3) = 480$$

$$F(2, \underline{4}, \underline{1}, 3) = 436 = F(S_{best})$$

$$F(2, 1, 3, 4) = 652$$

Tabu list: $\{(1, 4)\}$

$$S_2 = (2, 4, 1, 3), F(S_2) = 436$$

 $F(\underline{4}, \underline{2}, 1, 3) = 460$
 $F(2, 1, 4, 3) (= 500)$ tabu!
 $F(2, 4, 3, 1) = 608$
Tabu list: $\{(2, 4), (1, 4)\}$

$$S_3 = (4, 2, 1, 3), F(S_3) = 460$$

 $F(2, 4, 1, 3) (= 436)$ tabu!
 $F(4, \underline{1}, \underline{2}, 3) = 440$
 $F(4, 2, 3, 1) = 632$

Tabu list: $\{(2,1),(2,4)\}$

Example: tabu list - solution I

jobs	1	2	3	4
pj	10	10	13	4
d_j	4	2	1	12
w_j	14	12	1	12

$$S_1 = (2, 1, 4, 3)$$

$$F(S_1) = \sum_{i=1}^{n} w_i T_j = 12 \cdot 8 + 14 \cdot 16 + 12 \cdot 12 + 1 \cdot 36 = 500 = F(S_{best})$$

$$F(1, 2, 4, 3) = 480$$

$$F(2, \underline{4}, \underline{1}, 3) = 436 = F(S_{best})$$

$$F(2, 1, 3, 4) = 652$$

Tabu list: $\{(1, 4)\}$

$$S_2 = (2, 4, 1, 3), F(S_2) = 436$$

$$F(4, 2, 1, 3) = 460$$

$$F(2, 1, 4, 3) (= 500)$$
 tabu!

$$F(2, 4, 3, 1) = 608$$

Tabu list:
$$\{(2,4), (1,4)\}$$

$$S_3 = (4, 2, 1, 3), F(S_3) = 460$$

$$F(2, 4, 1, 3) (= 436)$$
 tabu!

$$F(4, 1, 2, 3) = 440$$

$$F(4, 2, 3, 1) = 632$$

Tabu list:
$$\{(2,1),(2,4)\}$$

Example: tabu list - solution I

jobs	1	2	3	4	
рj	10	10	13	4	
d_j	4	2	1	12	
w_j	14	12	1	12	

$$S_1 = (2, 1, 4, 3)$$

$$F(S_1) = \sum_{i=1}^{n} w_j T_j = 12 \cdot 8 + 14 \cdot 16 + 12 \cdot 12 + 1 \cdot 36 = 500 = F(S_{best})$$

$$F(1, 2, 4, 3) = 480$$

$$F(2, \underline{4}, \underline{1}, 3) = 436 = F(S_{best})$$

$$F(2, 1, 3, 4) = 652$$

Tabu list: $\{(1, 4)\}$

$$S_2 = (2, 4, 1, 3), F(S_2) = 436$$

$$F(4, 2, 1, 3) = 460$$

$$F(2, 1, 4, 3) (= 500)$$
 tabu!

$$F(2, 4, 3, 1) = 608$$

Tabu list:
$$\{(2,4), (1,4)\}$$

$$S_3 = (4, 2, 1, 3), F(S_3) = 460$$

$$F(2, 4, 1, 3) (= 436)$$
 tabu!

$$F(4, 1, 2, 3) = 440$$

$$F(4, 2, 3, 1) = 632$$

Tabu list:
$$\{(2, 1), (2, 4)\}$$

Example: tabu list - solution II [Rud13]

jobs	1	2	3	4
pj	10	10	13	4
d_i	4	2	1	12
w _i	14	12	1	12

$$S_3 = (4, 2, 1, 3), F(S_3) = 460$$

 $F(2, 4, 1, 3) (= 436)$ tabu!
 $F(4, \underline{1}, \underline{2}, 3) = 440$
 $F(4, 2, 3, 1) = 632$
Tabu list: $\{(2, 1), (2, 4)\}$

$$S_4 = (4, 1, 2, 3), F(S_4) = 440$$

 $F(\underline{1}, \underline{4}, 2, 3) = 408 = F(S_{best})$
 $F(4, 2, 1, 3) (= 460)$ tabu!
 $F(4, 1, 3, 2) = 586$
Tabu list: $\{(4, 1), (2, 1)\}$

$$F(S_{hest}) = 408$$

Example: tabu list - solution II [Rud13]

jobs	1	2	3	4
pj	10	10	13	4
d_j	4	2	1	12
Wj	14	12	1	12

$$S_3 = (4, 2, 1, 3), F(S_3) = 460$$

 $F(2, 4, 1, 3) (= 436)$ tabu!
 $F(4, \underline{1}, \underline{2}, 3) = 440$
 $F(4, 2, 3, 1) = 632$
Tabu list: $\{(2, 1), (2, 4)\}$

$$S_4 = (4, 1, 2, 3), F(S_4) = 440$$

 $F(\underline{1}, \underline{4}, 2, 3) = 408 = F(S_{best})$
 $F(4, 2, 1, 3) (= 460)$ tabu!
 $F(4, 1, 3, 2) = 586$
Tabu list: $\{(4, 1), (2, 1)\}$

$$F(S_{best}) = 408$$

Example: tabu list - solution II [Rud13]

jobs	1	2	3	4
pj	10	10	13	4
d_j	4	2	1	12
w_j	14	12	1	12

$$S_3 = (4, 2, 1, 3), F(S_3) = 460$$

 $F(2, 4, 1, 3) (= 436)$ tabu!
 $F(4, \underline{1}, \underline{2}, 3) = 440$
 $F(4, 2, 3, 1) = 632$
Tabu list: $\{(2, 1), (2, 4)\}$

$$S_4 = (4, 1, 2, 3), F(S_4) = 440$$

 $F(\underline{1}, \underline{4}, 2, 3) = 408 = F(S_{best})$
 $F(4, 2, 1, 3) (= 460)$ tabu!
 $F(4, 1, 3, 2) = 586$
Tabu list: $\{(4, 1), (2, 1)\}$

$$F(S_{hest}) = 408$$

Outline

- Introduction to Scheduling
 - Methodology Overview
- Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

Problem Statement [Pin09]

 $F2||C_{max}||$

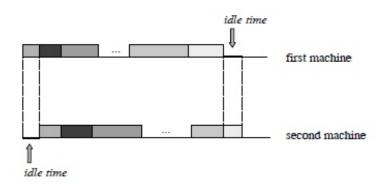
Flow shop environment:

- 2 machines, n jobs
- objective function: makespan
- arrival times of jobs $r_i = 0$
- ullet solution can be described by a sequence π
- problem was solved by Johnson in 1954

Johnson's Algorithm [Pinc

- Step 1. Schedule the group of jobs U that are shorter on the first machine than the second. $U = j \mid p1j < p2j$
- ② Step 2. Schedule the group of jobs V that are shorter on the second machine than the first. $V = j \mid p1j \geqslant p2j$
- 3 Step 3. Arrange jobs in U in non-decreasing order by their processing times on the first machine.
- Step 4. Arrange jobs in V in non-increasing order by their processing times on the second machine.
- Step 5. Concatenate U and V and that is the processing order for both machines.

Johnson's Algorithm - sequence [Pin09]



Johnson's Algorithm - Example [Pin09]

Example.

jobs	1	2	3	4	5	6	7	8	
p_{Ij}	5	2	1	7	6	3	7	5	
p_{2j}	2	6	2	5	6	7	2	1	

$$U = \{2, 3, 6\}$$

 $V = \{1, 4, 5, 7, 8\}$

jobs	3	2	6	5	4	7	1	8
p_{Ij}	1	2	3	6	7	7	5	5
p_{2i}	2	6	7	6	5	2	2	1
C_{1j}	1	3	6	12	19	26	31	36
C_{2j}	3	9	16	22	27	29	33	37

$$C_{max} = 37$$

Outline

- Introduction to Scheduling
 - Methodology Overview
- Classification of Scheduling Problems
 - Machine environment
 - Job Characteristics
 - Optimization
- 3 Local Search Methods
 - General
 - Tabu Search
 - Flow Shop Scheduling
- Project Scheduling
 - Critical Path Method

Problem Statement [Pin09]

- Environment:
 - parallel-machines,
 - jobs are subject to precedence constraints,
 - Objective: to minimize the makespan

$$P \infty | prec | C_{max}$$
 $m \geqslant n$ Critical Path Method $Pm | prec | C_{max}$ $2 \leqslant m < n$ NP hard

- slack job: the start of its processing time can be postponed without increasing the makespan,
- critical job: the job that can not be postponed,
- critical path: the set of critical jobs.

Critical Path Method [Pin09]

- Forward procedure that yields a schedule with minimum makespan.
- Notation
 - p_i ... processing time of jobs j
 - S'_i ... the earliest possible starting time of job j
 - C_i' ... the earliest possible completion time of job j
 - $C_i' = S_i' + p_i$
 - {all $k \to j$ } ... jobs that are predecessors of job j
- Steps:
 - **1 Step 1** For each job j that has no predecessors $S'_i = 0$ and $C'_i = p_j$
 - 2 **Step 2** Compute inductively for each remaining job *j*

$$S_j' = \max_{\{\mathsf{all}\ k \to j\}} C_k'$$

$$C_i' = S_i' + p_i$$

3 Step 3 $C_{max} = \max(C'_1, ..., C'_n)$

Critical Path Method II

- Backward procedure determines the latest possible starting and completion times.
- Notation

 - S_j"... the latest possible starting time of job j
 C_j"... the latest possible completion time of job j
 - $\{j \rightarrow \mathsf{all}\ k\} \dots \mathsf{jobs}\ \mathsf{that}\ \mathsf{are}\ \mathsf{successors}\ \mathsf{of}\ \mathsf{job}\ i$
- Steps:
 - Step 1

For each job j that has no successors $C_i'' = C_{max}$ and $S_i'' = C_{max} - p_i$

2 Step 2 Compute inductively for each remaining job i

$$C_j'' = \min_{\{j \to \mathsf{all } k\}} S_k''$$

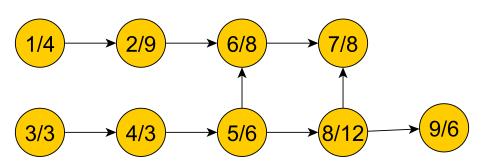
$$S_i^{\prime\prime}=C_i^{\prime\prime}-p_i$$

Step 3 Verify that $0 = \min(S''_1, \ldots, S''_n)$

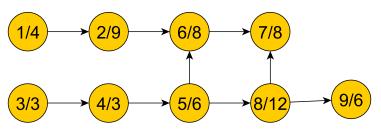
Critical Path Method III [Pin09]

- The jobs whose earliest possible starting times are earlier than latest possible starting times are referred to as slack jobs.
- The jobs whose earliest possible starting times are equal to their latest possible starting times are **critical jobs**.
- A critical path is a chain of jobs which begin at time 0 and ends at C_{max} .

Critical Path Method - Example I [Pin09]



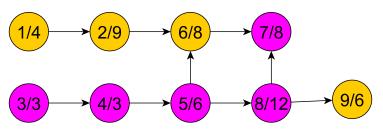
Critical Path Method - Example II [Pin09]



jobs	1	2	3	4	5	6	7	8	9
S'_j	0	4	0	3	6	max {13, 12} =13	max {21, 24} =24	12	24
C'_j	4	4+9 =13	3	3+3 =6	6+6 =12	13+8 =21	24+8 =32	12+12 =24	24+6 =30
<i>C</i> _j "	7	16	3	6	min {16, 12} =12	24	32	min {24, 26} =24	32
S_j''	7-4 =3	16-9 =7	3-3 =0	6-3 =3	12-6 =6	24-8 =16	32-8 =24	24-12 =12	32-6 =26

4 11 1 4 12 1 4 2 1 4 2 1 2

Critical Path Method - Example III



jobs	1	2	3	4	5	6	7	8	9
S'_j	0	4	0	3	6	max {13, 12} =13	max {21, 24} =24	12	24
C'_j	4	4+9 =13	3	3+3 =6	6+6 =12	13+8 =21	24+8 =32	12+12 =24	24+6 =30
C_j''	7	16	3	6	min {16, 12} =12	24	32	min {24, 26} =24	32
S_j''	7-4 =3	16-9 =7	3-3 =0	6-3 =3	12-6 =6	24-8 =16	32-8 =24	24-12 =12	32-6 =26

- Stochastic activity (job) durations
- Nonavailability of resources
- Multiple resource types
- Preemption of activities
- Multiple projects with individual project due-dates

- common one: minimising overall project duration
- maximise resource utilisation factors

- Stochastic activity (job) durations
- Nonavailability of resources
- Multiple resource types
- Preemption of activities
- Multiple projects with individual project due-dates

Objectives

- common one: minimising overall project duration
- resource leveling ... minimise resource loading peaks without increasing project duration
- maximise resource utilisation factors

Literatura I

Tim Nieberg.

Lecture course "scheduling".

Michael L. Pinedo.

Planning and Scheduling in Manufacturing and Services. Springer-Verlag New York, 2 edition, 2009.

Stuart J. Russell and Peter Norvig.

Artificial Intelligence, A Modern Approach.

Pre, third edition, 2010.

Hana Rudová.

PA167 Rozvrhování, lecture notes, in Czech.

http://www.fi.muni.cz/ hanka/rozvrhovani/, March 2013.

