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Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitave, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.
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Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitave, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.

Linear regression is a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

ŷ = h(x) = w0 + w1x1 + . . . + wDxD = w0 + 〈w, x〉 = w0 + xwT ,

where

■ ŷ is the model prediction (estimate of the true value y),

■ h(x) is the linear model (a hypothesis),

■ w0, . . . , wD are the coefficients of the linear function, w0 is the bias, organized in a row
vector w,

■ 〈w, x〉 is a dot product of vectors w and x (scalar product),

■ which can be also computed as a matrix product xwT if w and x are row vectors.
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Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1, x1, . . . , xD), then we can write the linear model in an even simpler form (without
the explicit bias term):

ŷ = h(x) = w0 · 1 + w1x1 + . . . + wDxD = 〈w, x〉 = xwT .
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Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1, x1, . . . , xD), then we can write the linear model in an even simpler form (without
the explicit bias term):

ŷ = h(x) = w0 · 1 + w1x1 + . . . + wDxD = 〈w, x〉 = xwT .

Matrix notation: If we organize the data into matrix X and vector y, such that

X =




1 x(1)

...
...

1 x(|T|)


 and y =




y(1)

...

y(|T|)


 ,

and similarly with ŷ, then we can write a batch computation of predictions for all data in
X as

ŷ = XwT .
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).
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P. Pošı́k c© 2014 Artificial Intelligence – 5 / 9

Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).

Model learning: If the data is given (T is fixed), we can manipulate the model parameters
w to fit the model to the data:

w∗ = argmin
w

J(w, T).

How to train the model?
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Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).
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Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Fitting a line to data:

■ find parameters w0, w1 of a linear model ŷ = w0 + w1x

■ given a traning (multi)set T = {(x(i), y(i))}
|T|
i=1.
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Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Fitting a line to data:

■ find parameters w0, w1 of a linear model ŷ = w0 + w1x

■ given a traning (multi)set T = {(x(i), y(i))}
|T|
i=1.

How to fit depending on the number of training examples:

■ Given a single example (1 equation, 2 parameters)
⇒ infinitely many linear function can be fitted.

■ Given 2 examples (2 equations, 2 parameters)
⇒ exactly 1 linear function can be fitted.

■ Given 3 or more examples (> 2 equations, 2 parameters)
⇒ no line can be fitted without any error
⇒ a line which minimizes the “size” of error y − ŷ can be fitted:

w∗ = (w0, w1) = argmin
w0 ,w1

J(w0, w1, T).
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The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error

J(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
.

x

y

0

w0

|y(1) − ŷ(1) |

|y(2) − ŷ(2) |
|y(3) − ŷ(3) |

(x(1) , y(1))

(x(2) , y(2))

(x(3) , y(3))

ŷ = w0 + w1x

(x(1) , ŷ(1))

(x(2) , ŷ(2))

(x(3) , ŷ(3))

1

w1
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The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error

J(w) =
1
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∑
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(x(1) , y(1))
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ŷ = w0 + w1x

(x(1) , ŷ(1))

(x(2) , ŷ(2))

(x(3) , ŷ(3))

1

w1

Explicit solution:

w1 =
∑

|T|
i=1(x(i) − x)(y(i) − y)

∑
|T|
i=1(x(i) − x)2

=
sxy

s2
x

w0 = y − w1x



Universal fitting method: minimization of cost function J
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The landscape of J in the space of w0 and w1:
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Gradually better linear models found by an optimization method (BFGS):
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Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D ), i.e. the

examples are described by more than 1 feature (they are D-dimensional).
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Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D ), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

■ find parameters w = (w1, . . . , wD) of a linear model ŷ = xwT

■ given the training (multi)set T = {(x(i), y(i))}
|T|
i=1.

■ The model is a hyperplane in the D + 1-dimensional space.
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P. Pošı́k c© 2014 Artificial Intelligence – 9 / 9

Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D ), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

■ find parameters w = (w1, . . . , wD) of a linear model ŷ = xwT

■ given the training (multi)set T = {(x(i), y(i))}
|T|
i=1.

■ The model is a hyperplane in the D + 1-dimensional space.

Fitting methods:

1. Numeric optimization of J(w, T):

■ Works as for simple regression, it only searches a space with more dimensions.

■ Sometimes one need to tune some parameters of the optimization algorithm to
work properly (learning rate in gradient descent, etc.).

■ May be slow (many iterations needed), but works even for very large D.

2. Normal equation:

w∗ = (XT X)−1XTy

■ Method to solve for the optimal w∗ analytically!

■ No need to choose optimization algorithm parameters.

■ No iterations.

■ Needs to compute (XT X)−1, which is O(D3). Slow, or intractable, for large D.
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