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Linear regression

Regression task is a supervised learning task, i.e.

m atraining (multi)set T = {(x(1),yM), ..., (x(ITD,y(TD)} is available, where

Linear regression

« Regression m the labels y() are quantitave, often continuous (as opposed to classification tasks
. ?OF‘““"“ rlemarks where y(i) are nominal).

e Train, apply

o 1D regression m [ts purpose is to model the relationship between independent variables (inputs)
o LSM x = (x1,...,xp) and the dependent variable (output) y.

e Minimizing J(w, T)
e Multivariate linear
regression
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Linear regression is a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

y=h(x) =wy+wix1 + ...+ wpxp = wy + (w, x) = wy + xw?!,

where

m ¥ is the model prediction (estimate of the true value ),
m  /i(x) is the linear model (a hypothesis),

®  wy,..., wp are the coefficients of the linear function, wy is the bias, organized in a row
vector w,

m (w,x) is a dot product of vectors w and x (scalar product),
= which can be also computed as a matrix product xw! if w and x are row vectors.
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Notation remarks

Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1,x1,...,xp), then we can write the linear model in an even simpler form (without

the explicit bias term):

Linear regression

e Regression
e Notation remarks y\: h(x) = wp - 1+ wW1X]1 + ...+ WpXp = (w, x> = XxXw
o Train, apply

T

e 1D regression

e LSM

e Minimizing J(w, T)
e Multivariate linear
regression
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Notation remarks

Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1,x1,...,xp), then we can write the linear model in an even simpler form (without
the explicit bias term):

Linear regression

e Regression

e Notation remarks y\: h(x) = Wy - 1 + w1X1 + ...+ WpXp = <w, x> = wa.

o Train, apply
e 1D regression

e LSM
o Minimizing |(w,7)  Matrix notation: If we organize the data into matrix X and vector y, such that

e Multivariate linear
regression 1 x(1> y(l)
X = : ; and y = : ,
1 207D y (T

and similarly with y, then we can write a batch computation of predictions for all data in
X as

j=Xw’.
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Two operation modes

Any ML model has 2 operation modes:

Training data

1. learning (training, fitting) and ¥
Linear regression ; . : : s
py— 2. application (testing, making predictions). ?
e Notation remarks
o Train, apply Testing data —>( Model )—> Prediction
e 1D regression
e LSM

e Minimizing J(w, T)
e Multivariate linear
regression
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Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

P. Posik (© 2014 Artificial Intelligence -5 / 9



Two operation modes

Any ML model has 2 operation modes:

Training data

1. learning (training, fitting) and ¥

Lines . . . . . . i
e 2. application (testing, making predictions).

® Regression

e Notation remarks
e Train, apply Testing data —>( Model )—> Prediction
e 1D regression

e LSM

o Minimizing /(w,7)  The model h can be viewed as a function of 2 variables: h(x, w).

e Multivariate linear
regression
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Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

Model learning: If the data is given (T is fixed), we can manipulate the model parameters
w to fit the model to the data:

w* = argmin J(w, T).

w

How to train the model?
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Simple (univariate) linear regression

Simple (univariate) regression deals with cases where x() = x(), i.e. the examples are
described by a single feature (they are 1-dimensional).

Linear regression

e Regression

e Notation remarks

o Train, apply

e 1D regression

e LSM

e Minimizing J(w, T)
e Multivariate linear
regression
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Simple (univariate) linear regression

Simple (univariate) regression deals with cases where x() = x(), i.e. the examples are
described by a single feature (they are 1-dimensional).

Linear regression

* Regression Fitting a line to data:

e Notation remarks

o Train, apply m find parameters wy, wy of a linear model §j = wg 4+ w1 x
e 1D regression ) . ) , . |T|

o LSM = given a traning (multi)set T = {(x(), ()} .\

e Minimizing J(w, T)

e Multivariate linear

regression How to fit depending on the number of training examples:

m  Given a single example (1 equation, 2 parameters)
= infinitely many linear function can be fitted.

= Given 2 examples (2 equations, 2 parameters)
= exactly 1 linear function can be fitted.

m  Given 3 or more examples (> 2 equations, 2 parameters)
= no line can be fitted without any error
= a line which minimizes the “size” of error y — ¥ can be fitted:

w* = (wp, w1) = argmin J(wo, w1, T).

W,
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The least squares method

The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error

Linear regression

e Regression

|T]|
e Notation remarks ] - Z (y (Z

o Train, apply
e 1D regression

o« LSM y
e Minimizing J(w, T)
e Multivariate linear
regression
y® -7
(x(M), 7)) 1
" /i ly® — 5|
0
(x(1),yM)
0 X
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Explicit solution:

L (D =)y =) sy wo = j — Wi
Z|-£|1(x(i) — x)2 52

X
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Universal fitting method: minimization of cost function J

The landscape of | in the space of wy and w;:
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Multivariate linear regression

Multivariate linear regression deals with cases where x(0) = ( gi), cel, xg) ), i.e. the
examples are described by more than 1 feature (they are D-dimensional).

Linear regression

e Regression

e Notation remarks

o Train, apply

e 1D regression

e LSM

e Minimizing J(w, T)
e Multivariate linear
regression
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Multivariate linear regression

Multivariate linear regression deals with cases where x(0) = ( gi), cel, xg) ), i.e. the
examples are described by more than 1 feature (they are D-dimensional).

Linear regression

» Regression Model fitting:
:izzihj;‘;fymarks = find parameters w = (wy, ..., wp) of a linear model § = xw’
1D regression = given the training (multi)set T = {(x?), y(i))}lﬂl.

e LSM
e Minimizing /(w,7) ~ m  The model is a hyperplane in the D + 1-dimensional space.

e Multivariate linear
regression
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Multivariate linear regression

Multivariate linear regression deals with cases where x(0) = ( gi), cel, xg) ), i.e. the
examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

m find parameters w = (w1, ..., wp) of a linear model §/ = xw

Linear regression

® Regression

e Notation remarks

o Train, apply

:lz\rfgressm m given the training (multi)set T = {(x(i),y("))}ﬂ-
o Minimizing J (w, T) m The model is a hyperplane in the D + 1-dimensional space.

e Multivariate linear
regression

Fitting methods:
1. Numeric optimization of J(w, T):

= Works as for simple regression, it only searches a space with more dimensions.

m  Sometimes one need to tune some parameters of the optimization algorithm to
work properly (learning rate in gradient descent, etc.).

= May be slow (many iterations needed), but works even for very large D.

2. Normal equation:
w* — (XTX)_ley

= Method to solve for the optimal w* analytically!

= No need to choose optimization algorithm parameters.

m  No iterations.

= Needs to compute (X! X)~!, which is O(D?). Slow, or intractable, for large D.
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