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Linear regression
Regression task is a supervised learning task, i.e.
®  atraining (multi)set T = {(x®),yM),. .., (x(T),y(T)} is available, where

m the labels y(®) are quantitave, often continuous (as opposed to classification tasks where y() are nominal).
m  ts purpose is to model the relationship between independent variables (inputs) x = (x3,...,xp) and the dependent variable

(output) y.

Linear regression is a particular regression model which assumes (and learns) linear relationship between the inputs and the output:

7 =h(x) = wy +wix; + ... +wpxp = wy + (w,x) = wy + xw’,

where

m 7 is the model prediction (estimate of the true value y),

®  Ji(x) is the linear model (a hypothesis),

® wy,...,wp are the coefficients of the linear function, wy is the bias, organized in a row vector w,
m  (w,x) is a dot product of vectors w and x (scalar product),

= which can be also computed as a matrix product xw” if w and x are row vectors.
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Notation remarks

Homogeneous coordinates: If we add “1” as the first element of x so that x = (1, x1, ..., xp), then we can write the linear model in
an even simpler form (without the explicit bias term):

J=h(x) =wo-14+wix; +...+wpxp = (w,x) =xw’.

Matrix notation: If we organize the data into matrix X and vector y, such that
1 x(l) y(l)
X = : : and y= : ,
1 07D y{
and similarly with ¥, then we can write a batch computation of predictions for all data in X as

7 =Xw’.
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Two operation modes

Any ML model has 2 operation modes:

Training data

Learning

1. learning (training, fitting) and
2. application (testing, making predictions).

Testing data |-—>( Model )—-PI Prediction |

The model i can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make predictions:

7 =h(x, w) = hy(x).

Model learning: If the data is given (T is fixed), we can manipulate the model parameters w to fit the model to the data:

w* = argmin J(w, T).
w

How to train the model?
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Simple (univariate) linear regression

Simple (univariate) regression deals with cases where x()) = x(), i.e. the examples are described by a single feature (they are
1-dimensional).

Fitting a line to data:
= find parameters wy, w; of a linear model § = wo + w1 x

® given a traning (multi)set T = {(x(i),y(i))}l‘.i‘l,

How to fit depending on the number of training examples:
= Given a single example (1 equation, 2 parameters)
= infinitely many linear function can be fitted.
= Given 2 examples (2 equations, 2 parameters)
= exactly 1 linear function can be fitted.
= Given 3 or more examples (> 2 equations, 2 parameters)

= no line can be fitted without any error
= a line which minimizes the “size” of error i — i/ can be fitted:

w* = (wp, wq) = argmin [ (wp, wq, T).
wp, Wy
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The least squares method

The least squares method (LSM) suggests to choose such parameters w which minimize the mean squared error
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Explicit solution:
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Universal fitting method: minimization of cost function |

The landscape of ] in the space of wy and wy:
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Multivariate linear regression

Multivariate linear regression deals with cases where x()) = (xp, S xg> ), i.e. the examples are described by more than 1 feature

(they are D-dimensional).
Model fitting:

» find parameters w = (wy, ..., wp) of a linear model § = xwT

® given the training (multi)set T = {(x(i),y(i))}li‘l.
®  The model is a hyperplane in the D + 1-dimensional space.

Fitting methods:
1. Numeric optimization of J(w, T):
m Works as for simple regression, it only searches a space with more dimensions.

m  Sometimes one need to tune some parameters of the optimization algorithm to work properly (learning rate in gradient
descent, etc.).

m  May be slow (many iterations needed), but works even for very large D.

2. Normal equation:
w = (XTX)fley

= Method to solve for the optimal w* analytically!

= No need to choose optimization algorithm parameters.

= No iterations.

m  Needs to compute (XTX)~1, which is O(D?). Slow, or intractable, for large D.
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