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P. Pošı́k c© 2014 Artificial Intelligence – 1 / 12

Linear models for classification.

Perceptron. Logistic regression.

Petr Pošı́k
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Let’s have the training dataset T = {(x
(1), y(1)), . . . , (x

(|T|), y(|T|)):

■ each example is described by a vector of features x = (x1, . . . , xD),

■ each example is labeled with the correct class y ∈ {+1,−1}.

Discrimination function: a function allowing us to decide to which class an example x

belongs.

■ For 2 classes, 1 discrimination function is enough.

■ Decision rule:

f (x
(i)) > 0 ⇐⇒ ŷ(i) = +1

f (x
(i)) < 0 ⇐⇒ ŷ(i) = −1

}
i.e. ŷ(i) = sign

(
f (x

(i))
)

■ Learning than amounts to finding (parameters of) function f .
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Problem: Learn a linear discrimination function f from data T.
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Problem: Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

■ Use cost function

JMSE(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − f (w, x

(i))
)2

,

■ minimize it with respect to w,

■ and use ŷ = sign( f (x)).

■ Issue: Points far away from the decision boundary have huge effect on the model!



Naive approach

Linear classification

• Binary class.

• Naive approach

Perceptron

Logistic regression
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Problem: Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

■ Use cost function

JMSE(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − f (w, x

(i))
)2

,

■ minimize it with respect to w,

■ and use ŷ = sign( f (x)).

■ Issue: Points far away from the decision boundary have huge effect on the model!

Better solution: fit a linear discrimination function which minimizes the number of errors!

■ Cost function:

J01(w, T) =
1

|T|

|T|

∑
i=1

I(y(i) 6= ŷ(i)),

where I is the indicator function: I(a) returns 1 iff a is True, 0 otherwise.

■ The cost function is non-smooth, contains plateaus, not easy to optimize, but there are
algorithms which attempt to solve it, e.g. perceptron, Kozinec’s algorithm, etc.



Perceptron
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Perceptron [Ros62]:

■ a simple model of a neuron

■ linear classifier (in this case a classifier with linear discrimination function)

Algorithm 1: Perceptron algorith

Input: Linearly separable training dataset: {x
(i) , y(i)}, x

(i) ∈ RD+1 (homogeneous coordinates),

y(i) ∈ {+1,−1}

Output: Weight vector w such that x
(i)

w
T
> 0 iff y(i) = +1 and x

(i)
w

T
< 0 iff y(i) = −1

1 begin
2 Initialize the weight vector, e.g. w = 0.

3 Invert all examples x belonging to class -1: x
(i) = −x

(i) for all i, where y(i) = −1.

4 Find an incorrectly classified training vector, i.e. find j such that x
(i)

w
T ≤ 0, e.g. the worst

classified vector: x
(j) = argmin

x
(i) (x

(i)
w

T).

5 if all examples classified correctly then
6 Return the solution w. Terminate.
7 else

8 Update the weight vector: w = w + x
(j) .

9 Go to 4.

[Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington, D.C., 1962.
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Perceptron convergence theorem [Nov62]:

■ Perceptron algorithm eventually finds a hyperplane that separates 2 classes of points,
if such a hyperplane exists.

■ If no separating hyperplane exists, the alorithm does not have to converge and will
iterate forever.

Possible solutions:

■ Pocket algorithm - track the error the perceptron makes in each iteration and store the
best weights found so far in a separate memory (pocket).

■ Use a different learning algorithm, which finds an approximate solution, if the classes
are not linearly separable.

[Nov62] Albert B. J. Novikoff. On convergence proofs for perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata,
volume 12, Brooklyn, New York, 1962.
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The perceptron algorithm

■ finds a separating hyperplane, if it exists;

■ but if a single separating hyperplane exists, then there are infinitely many (equally
good) separating hyperplanes

■ and perceptron finds any of them!

Which separating hyperplane is the optimal one? What does “optimal” actually mean?
(Possible answers in the SVM lecture.)
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Problem: Learn a binary classifier for the dataset T = {(x
(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on h. How to limit their influence?
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Problem: Learn a binary classifier for the dataset T = {(x
(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on h. How to limit their influence?

Logistic regression uses a transformation of the values of linear function

hw(x) = g(xw
T) =

1

1 + e−xw
T

,

where

g(z) =
1

1 + e−z

is the sigmoid function (a.k.a logistic function).
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Problem: Learn a binary classifier for the dataset T = {(x
(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on h. How to limit their influence?

Logistic regression uses a transformation of the values of linear function

hw(x) = g(xw
T) =

1

1 + e−xw
T

,

where

g(z) =
1

1 + e−z

is the sigmoid function (a.k.a logistic function).

Interpretation of the model:

■ hw(x) estimates the probability that x belongs to class 1.

■ Logistic regression is a classification model!

■ The discrimination function hw(x) itself is not linear anymore; but the decision
boundary is still linear!

1Previously, we have used y(i) ∈ {−1,+1}, but the values can be chosen arbitrarily, and {0, 1} is convenient for
logistic regression.
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To train the logistic regression model, one can use the JMSE criterion:

J(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − hw(x

(i))
)2

.

However, this results in a non-convex multimodal landscape which is hard to optimize.



Cost function

Linear classification

Perceptron

Logistic regression

• Model

• Cost function
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To train the logistic regression model, one can use the JMSE criterion:

J(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − hw(x

(i))
)2

.

However, this results in a non-convex multimodal landscape which is hard to optimize.

Logistic regression uses a modified cost function

J(w, T) =
1

|T|

|T|

∑
i=1

cost(hw(y(i), x
(i)), where

cost(y, ŷ) =

{
− log(ŷ) if y = 1

− log(1 − ŷ) if y = 0
,

which can be rewritten in a single expression as

cost(y, ŷ) = −y log(ŷ)− (1 − y) log(1 − ŷ).

Such a cost function is simpler to optimize.
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