

Faculty of Electrical Engineering Department of Cybernetics

# Linear models for classification. Perceptron. Logistic regression.

Petr Pošík





Binary class.Naive approach

Logistic regression

Perceptron

# **Binary classification task (dichotomy)**

Let's have the training dataset  $T = \{(x^{(1)}, y^{(1)}), \dots, (x^{(|T|)}, y^{(|T|)})\}$ :

- each example is described by a vector of features  $x = (x_1, ..., x_D)$ ,
- each example is labeled with the correct class  $y \in \{+1, -1\}$ .

**Discrimination function:** a function allowing us to *decide* to which class an example *x* belongs.

- For 2 classes, 1 discrimination function is enough.
- Decision rule:

$$\begin{cases} f(\boldsymbol{x}^{(i)}) > 0 \iff \widehat{y}^{(i)} = +1 \\ f(\boldsymbol{x}^{(i)}) < 0 \iff \widehat{y}^{(i)} = -1 \end{cases}$$
 i.e.  $\widehat{y}^{(i)} = \operatorname{sign}\left(f(\boldsymbol{x}^{(i)})\right)$ 

• *Learning* than amounts to finding (parameters of) function f.





# Naive approach

**Problem:** Learn a linear discrimination function *f* from data *T*.

Linear classification

• Binary class.

Naive approach

Perceptron



Linear classification • Binary class.

• Naive approach

# Naive approach

**Problem:** Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

Use cost function

$$J_{MSE}(\boldsymbol{w},T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left( y^{(i)} - f(\boldsymbol{w},\boldsymbol{x}^{(i)}) \right)^2,$$

- minimize it with respect to w,
- and use  $\widehat{y} = \operatorname{sign}(f(x))$ .
- Issue: Points far away from the decision boundary have *huge effect* on the model!

Perceptron



# Naive approach

**Problem:** Learn a linear discrimination function *f* from data *T*.

Linear classification Naive solution: fit linear regression model to the data!

• Binary class.

Naive approach

Perceptron

Logistic regression

Use cost function

$$J_{MSE}(\boldsymbol{w},T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left( y^{(i)} - f(\boldsymbol{w},\boldsymbol{x}^{(i)}) \right)^2,$$

- $\blacksquare \quad \text{minimize it with respect to } w,$
- and use  $\widehat{y} = \operatorname{sign}(f(x))$ .
- Issue: Points far away from the decision boundary have *huge effect* on the model!

**Better solution:** fit a linear discrimination function which minimizes the number of errors!

Cost function:

$$J_{01}(w,T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \mathbb{I}(y^{(i)} \neq \hat{y}^{(i)}),$$

where  $\mathbb{I}$  is the indicator function:  $\mathbb{I}(a)$  returns 1 iff *a* is True, 0 otherwise.

■ The cost function is non-smooth, contains plateaus, not easy to optimize, but there are algorithms which attempt to solve it, e.g. perceptron, Kozinec's algorithm, etc.



# Perceptron



Perceptron
Algorithm
Demo

FeaturesResult

Logistic regression

# **Perceptron algorithm**

Perceptron [Ros62]:

- a simple model of a neuron
- linear classifier (in this case a classifier with linear discrimination function)

### Algorithm 1: Perceptron algorith

**Input**: Linearly separable training dataset:  $\{x^{(i)}, y^{(i)}\}, x^{(i)} \in \mathbb{R}^{D+1}$  (homogeneous coordinates),  $y^{(i)} \in \{+1, -1\}$ 

**Output**: Weight vector w such that  $x^{(i)}w^T > 0$  iff  $y^{(i)} = +1$  and  $x^{(i)}w^T < 0$  iff  $y^{(i)} = -1$ 

#### 1 begin

6

7

8

9

- 2 Initialize the weight vector, e.g. w = 0.
- 3 Invert all examples *x* belonging to class -1:  $x^{(i)} = -x^{(i)}$  for all *i*, where  $y^{(i)} = -1$ .
- 4 Find an incorrectly classified training vector, i.e. find *j* such that  $\mathbf{x}^{(i)}\mathbf{w}^T \leq 0$ , e.g. the worst classified vector:  $\mathbf{x}^{(j)} = \operatorname{argmin}_{\mathbf{x}^{(i)}}(\mathbf{x}^{(i)}\mathbf{w}^T)$ .
- 5 **if** all examples classified correctly **then** 
  - Return the solution *w*. Terminate.
  - else
  - Update the weight vector:  $w = w + x^{(j)}$ . Go to 4.

[Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington, D.C., 1962.







Perceptron

• Algorithm

• Demo

- Features
- Result



# Features of the perceptron algorithm

Perceptron convergence theorem [Nov62]:

- Perceptron algorithm eventually finds a hyperplane that separates 2 classes of points, if such a hyperplane exists.
  - If no separating hyperplane exists, the alorithm does not have to converge and will iterate forever.

• Features

• Algorithm

• Result

Perceptron

• Demo

- Possible solutions:
  - Pocket algorithm track the error the perceptron makes in each iteration and store the best weights found so far in a separate memory (pocket).
  - Use a different learning algorithm, which finds an approximate solution, if the classes are not linearly separable.



# The hyperplane found by perceptron

### The perceptron algorithm

finds a separating hyperplane, if it exists;

Linear classification

Perceptron

- Algorithm
- Demo
- Features
- Result

Logistic regression

but if a single separating hyperplane exists, then there are infinitely many (equally good) separating hyperplanes



and perceptron finds *any* of them!

Which separating hyperplane is the optimal one? What does "optimal" actually mean? (Possible answers in the SVM lecture.)





### Logistic regression model

have a huge impact on *h*. How to limit their influence?

**Problem:** Learn a binary classifier for the dataset  $T = \{(x^{(i)}, y^{(i)})\}$ , where  $y^{(i)} \in \{0, 1\}$ .<sup>1</sup>

To reiterate: when using linear regression, the examples far from the decision boundary

Linear classification

Perceptron

Logistic regression

• Model

• Cost function



# Logistic regression model

**Problem:** Learn a binary classifier for the dataset  $T = \{(x^{(i)}, y^{(i)})\}$ , where  $y^{(i)} \in \{0, 1\}$ .<sup>1</sup>

To reiterate: when using linear regression, the examples far from the decision boundary

Linear classification

Perceptron

Logistic regression

• Model

• Cost function

Logistic regression uses a transformation of the values of linear function

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = g(\boldsymbol{x}\boldsymbol{w}^T) = \frac{1}{1 + e^{-\boldsymbol{x}\boldsymbol{w}^T}},$$

have a huge impact on *h*. How to limit their influence?

where

$$g(z) = \frac{1}{1 + e^{-z}}$$

is the **sigmoid** function (a.k.a **logistic** function).



# Logistic regression model

**Problem:** Learn a binary classifier for the dataset  $T = \{(x^{(i)}, y^{(i)})\}$ , where  $y^{(i)} \in \{0, 1\}$ .<sup>1</sup>

To reiterate: when using linear regression, the examples far from the decision boundary

Linear classification

Perceptron

Logistic regression

• Model

• Cost function

Logistic regression uses a transformation of the values of linear function

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = g(\boldsymbol{x}\boldsymbol{w}^T) = \frac{1}{1 + e^{-\boldsymbol{x}\boldsymbol{w}^T}},$$

have a huge impact on *h*. How to limit their influence?

where

$$g(z) = \frac{1}{1 + e^{-z}}$$

is the **sigmoid** function (a.k.a **logistic** function).

#### Interpretation of the model:

- $h_w(x)$  estimates the probability that *x* belongs to class 1.
- Logistic *regression* is a *classification model*!
- The discrimination function  $h_w(x)$  itself is not linear anymore; but the *decision boundary is still linear*!

<sup>&</sup>lt;sup>1</sup>Previously, we have used  $y^{(i)} \in \{-1, +1\}$ , but the values can be chosen arbitrarily, and  $\{0, 1\}$  is convenient for logistic regression.



# **Cost function**

To train the logistic regression model, one can use the  $J_{MSE}$  criterion:

 $J(w,T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left( y^{(i)} - h_w(x^{(i)}) \right)^2.$ 

Linear classification

Perceptron

Logistic regression

• Model

However, this results in a non-convex multimodal landscape which is hard to optimize.

• Cost function



# **Cost function**

To train the logistic regression model, one can use the  $J_{MSE}$  criterion:

$$J(w,T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left( y^{(i)} - h_w(x^{(i)}) \right)^2.$$

Logistic regression

Linear classification

• Model

Perceptron

• Cost function

However, this results in a non-convex multimodal landscape which is hard to optimize.

Logistic regression uses a modified cost function

$$J(w,T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \cot(h_w(y^{(i)}, x^{(i)}), \text{ where}$$
  
$$\cot(y, \hat{y}) = \begin{cases} -\log(\hat{y}) & \text{if } y = 1\\ -\log(1-\hat{y}) & \text{if } y = 0 \end{cases},$$

which can be rewritten in a single expression as

$$\operatorname{cost}(y,\widehat{y}) = -y\log(\widehat{y}) - (1-y)\log(1-\widehat{y}).$$

Such a cost function is simpler to optimize.