Linear models for classification.
Perceptron. Logistic regression.

Petr Pošík
Linear classification
Binary classification task (dichotomy)

Let’s have the training dataset $T = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(|T|)}, y^{(|T|)})\}$:

- each example is described by a vector of features $x = (x_1, \ldots, x_D)$,
- each example is labeled with the correct class $y \in \{+1, -1\}$.

Discrimination function: a function allowing us to *decide* to which class an example x belongs.

- For 2 classes, 1 discrimination function is enough.
- Decision rule:

\[
\begin{align*}
 f(x^{(i)}) > 0 & \iff \hat{y}^{(i)} = +1 \\
 f(x^{(i)}) < 0 & \iff \hat{y}^{(i)} = -1
\end{align*}
\]

i.e. $\hat{y}^{(i)} = \text{sign} \left(f(x^{(i)}) \right)$

Learning then amounts to finding (parameters of) function f.

![Graph of f(x)](image1)

![Graph of f(x) and its linear approximations](image2)
Naive approach

Problem: Learn a linear discrimination function f from data T.
Naive approach

Problem: Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

- Use cost function
 \[
 J_{MSE}(\mathbf{w}, T) = \frac{1}{|T|} \sum_{i=1}^{T} \left(y^{(i)} - f(\mathbf{w}, x^{(i)}) \right)^2,
 \]

- minimize it with respect to \mathbf{w},
- and use $\hat{y} = \text{sign}(f(x))$.
- Issue: Points far away from the decision boundary have huge effect on the model!
Naive approach

Problem: Learn a linear discrimination function \(f \) from data \(T \).

Naive solution: fit linear regression model to the data!

- Use cost function
 \[
 J_{MSE}(w, T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y^{(i)} - f(w, x^{(i)}) \right)^2,
 \]

- minimize it with respect to \(w \),
- and use \(\hat{y} = \text{sign}(f(x)) \).
- Issue: Points far away from the decision boundary have huge effect on the model!

Better solution: fit a linear discrimination function which minimizes the number of errors!

- Cost function:
 \[
 J_{01}(w, T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \mathbb{I}(y^{(i)} \neq \hat{y}^{(i)}),
 \]

 where \(\mathbb{I} \) is the indicator function: \(\mathbb{I}(a) \) returns 1 iff \(a \) is True, 0 otherwise.

- The cost function is non-smooth, contains plateaus, not easy to optimize, but there are algorithms which attempt to solve it, e.g. perceptron, Kozinec’s algorithm, etc.
Perceptron
Perceptron algorithm

Perceptron [Ros62]:

- a simple model of a neuron
- linear classifier (in this case a classifier with linear discrimination function)

Algorithm 1: Perceptron algorithm

Input: Linearly separable training dataset: \(\{x^{(i)}, y^{(i)}\}, x^{(i)} \in \mathbb{R}^{D+1} \) (homogeneous coordinates), \(y^{(i)} \in \{+1, -1\} \)

Output: Weight vector \(w \) such that \(x^{(i)}w^T > 0 \) iff \(y^{(i)} = +1 \) and \(x^{(i)}w^T < 0 \) iff \(y^{(i)} = -1 \)

begin

1 Initialize the weight vector, e.g. \(w = 0 \).

2 Invert all examples \(x \) belonging to class -1: \(x^{(i)} = -x^{(i)} \) for all \(i \), where \(y^{(i)} = -1 \).

3 Find an incorrectly classified training vector, i.e. find \(j \) such that \(x^{(i)}w^T \leq 0 \), e.g. the worst classified vector: \(x^{(j)} = \text{argmin}_{x^{(i)}} (x^{(i)}w^T) \).

4 if all examples classified correctly then

5 Return the solution \(w \). Terminate.

else

6 Update the weight vector: \(w = w + x^{(j)} \).

7 Go to 4.

Demo: Perceptron

Linear classification
- Perceptron
 - Algorithm
 - Demo
 - Features
 - Result

Logistic regression
Features of the perceptron algorithm

Perceptron convergence theorem [Nov62]:

- Perceptron algorithm eventually finds a hyperplane that separates 2 classes of points, if such a hyperplane exists.
- If no separating hyperplane exists, the algorithm does not have to converge and will iterate forever.

Possible solutions:

- Pocket algorithm - track the error the perceptron makes in each iteration and store the best weights found so far in a separate memory (pocket).
- Use a different learning algorithm, which finds an approximate solution, if the classes are not linearly separable.

The perceptron algorithm

- finds a separating hyperplane, if it exists;
- but if a single separating hyperplane exists, then there are infinitely many (equally good) separating hyperplanes

and perceptron finds *any* of them!

Which separating hyperplane is the optimal one? What does “optimal” actually mean? (Possible answers in the SVM lecture.)
Logistic regression
Logistic regression model

Problem: Learn a binary classifier for the dataset $T = \{(x^{(i)}, y^{(i)})\}$, where $y^{(i)} \in \{0, 1\}$.\(^1\)

To reiterate: when using linear regression, the examples far from the decision boundary have a huge impact on h. How to limit their influence?
Logistic regression model

Problem: Learn a binary classifier for the dataset $T = \{(x^{(i)}, y^{(i)})\}$, where $y^{(i)} \in \{0, 1\}$.\footnote{To reiterate: when using linear regression, the examples far from the decision boundary have a huge impact on h. How to limit their influence?}

Logistic regression uses a transformation of the values of linear function

$$h_w(x) = g(xw^T) = \frac{1}{1 + e^{-xw^T}},$$

where

$$g(z) = \frac{1}{1 + e^{-z}}$$

is the sigmoid function (a.k.a logistic function).
Logistic regression model

Problem: Learn a binary classifier for the dataset \(T = \{(x^{(i)}, y^{(i)})\} \), where \(y^{(i)} \in \{0, 1\} \).\(^1\)

To reiterate: when using linear regression, the examples far from the decision boundary have a huge impact on \(h \). How to limit their influence?

Logistic regression uses a transformation of the values of linear function

\[
h_w(x) = g(xw^T) = \frac{1}{1 + e^{-xw^T}},
\]

where

\[
g(z) = \frac{1}{1 + e^{-z}}
\]

is the **sigmoid** function (a.k.a **logistic** function).

Interpretation of the model:

- \(h_w(x) \) estimates the probability that \(x \) belongs to class 1.
- Logistic regression is a classification model!
- The discrimination function \(h_w(x) \) itself is not linear anymore; but the decision boundary is still linear!

\(^1\)Previously, we have used \(y^{(i)} \in \{-1, +1\} \), but the values can be chosen arbitrarily, and \(\{0, 1\} \) is convenient for logistic regression.
Cost function

To train the logistic regression model, one can use the J_{MSE} criterion:

$$J(w, T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y^{(i)} - h_w(x^{(i)}) \right)^2.$$

However, this results in a non-convex multimodal landscape which is hard to optimize.
To train the logistic regression model, one can use the J_{MSE} criterion:

\[J(w, T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y(i) - h_w(x(i)) \right)^2. \]

However, this results in a non-convex multimodal landscape which is hard to optimize.

Logistic regression uses a modified cost function

\[J(w, T) = \frac{1}{|T|} \sum_{i=1}^{|T|} \text{cost}(y(i), h_w(x(i))), \]

where

\[\text{cost}(y, \hat{y}) = \begin{cases} -\log(\hat{y}) & \text{if } y = 1 \\ -\log(1 - \hat{y}) & \text{if } y = 0 \end{cases}, \]

which can be rewritten in a single expression as

\[\text{cost}(y, \hat{y}) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}). \]

Such a cost function is simpler to optimize.