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Computational Learning Theory, COLT

Introduction and basic concepts 2 / 22

Concept

Examples of a concept:

■ even number, four-wheel vehicle, active politician, smart man, correct hypothesis

Why does it make sense to introduce concepts?

■ What is the difference between odd and even numbers? What is the difference between active politicians and the rest?

Domain X is a set of all possible object instances:

■ set of all whole numbers, all vehicles, all politicians, . . .

Object x ∈ X is described with values of some features:

■ number {value}

■ vehicle {manufacturer, engine type, number of doors, . . . }

■ politician {number of votings in the parliament, number of law proposals, number of law amendment proposals, number of
interpellations, . . . }

Target concept c ∈ C corresponds to certain subset of X, c ⊆ X:

■ each instance of x ∈ X is either an example or a counter-example of a concept c

■ characteristic function fc : X → {0, 1}

■ if fc(x) = 1, x is a positive example for concept c

■ if fc(x) = 0, x is a negative example (counter-example) of concept c

■ Concept c is any boolean function f over X!
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Hypothesis

Inductive learning task: find a hypothesis (model) h, which corresponds as much asd possible to the target concept konceptu c,
given

■ a subset D ⊂ X of examples (and counter-examples) of the target concept (training data) and

■ the space H of all possible hypotheses.

Hypothesis is a candidate description of the target concept.

■ H is the space of all possible hypotheses.

■ In the most general case, even the hypothesis h may be any boolean function h : X → {0, 1}.

■ Similar to concept, a hypothesis h is je a subset of X, h ⊆ X, as well.

The goal of learning:

■ find a hypothesis h which is correct for all examples from X, i.e.

∀x ∈ X : h(x) = c(x).
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COLT: Goals

Computational learning theory (COLT) tries to theoretically characterize

1. the machine learning problem complexity, i.e.

■ under what circumstances learning is actually possible,

2. the abilities of ML algorithms, i.e.

■ under what circumstances, a learning algorithm is able to learn successfully.

COLT tries to answer questions like:

■ Are there some problem complexity classes independently of the model/algorithm used?

■ What type of model (class of hypotheses) should we use? Is there an algorithm which is consistently better then some other
algorithm?

■ How many training examples do we need so that a model (hypothesis) can be successfully learned?

■ If the hypothesis space is large, is at actually possible to find the best hypothesis in a reasonable time?

■ How complex should the resulting hypothesis be?

■ If we find a hypothesis which is correct for all the training data D ⊂ X,
how can we be sure that the hypothesis as also correct for the rest of the data X \ D???

■ How many errors will the algorithm make before it learns the target concept successfully?
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Generalization

Generalization ability:

■ The ability of a learning ability to build a model which is able to correctly classify also the examples which were not part of the
training data set D.

■ It is measured as an error on X \ D.

Knowing nothing about the problem, is there any reason to prefer one algorithm over another?

Notation:

■ PA(h): prior probability that algorithm A generates hypothesis h

■ PA(h|D): probability that algorithm A generates h given the training data D:

■ in case of deterministic algorithms (nearest neighbors, decision trees, etc.), PA(h|D) is zero almost everywhere with the
exception of a single hypothesis

■ in case of stochastic algorithms (e.g. neural network trained from random initial weights), the distribution PA(h|D) is
non-zero for a larger subset of all hypotheses

■ P(c|D): the distribution of concepts consistent with training data D

If we do not know the target concept c, a natural measure of the algorithm generalization ability is the expected error over all
concepts given the training data D:

E(ErrA|D) = ∑
h,c

∑
x∈X\D

P(x) · I(c(x) 6= h(x)) · P(h|D) · P(c|D)

Without knowing P(c|D) we cannot compare 2 algorithms based on their genetalization error!!!

P. Pošı́k c© 2014 Artificial Intelligence – 6 / 22
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Example

x c h1 h2

000 1 1 1
D 001 -1 -1 -1

010 1 1 1

011 -1 1 -1
100 1 1 -1

X \ D 101 -1 1 -1
110 1 1 -1
111 1 1 -1

Assume that

■ objects are described by 3 binary attributes,

■ we have a single concept c, and

■ 2 deterministic algorithms and their corresponding hypotheses h1 and h2:
training data are memorized, one algorithm assigns new data to class +1, the other to class -1.

Given a concept c:

■ E(ErrA1
|c, D) = 0.4, E(ErrA2

|c, D) = 0.6,

■ algorithm A1 is clearly better than A2.

During the hypothesis building, we do not know the target concept c!

■ Assuming we have no prior information about concept c, i.e. all concepts are equally probable.

■ Training set D

■ allows us to eliminate all inconsistent hypotheses (224 in our case), but

■ it does not allow us to choose the right hypothesis among the consistent ones (in our case, there are 32 hypotheses
remaining), because

■ averaged over all concepts c consistent with D, both hypotheses are equally successful!
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No Free Lunch

“No Free Lunch” theorem: For any 2 algorithms A1 and A2 (represented by PA1
(h|D) and PA2

(h|D)) the following statements hold
independently of the sampling distribution P(x) and independently of a particular training data set D:

1. Averaged over all concepts c, E(ErrA1
|c, D) = E(ErrA2

|c, D).

2. Averaged over all distributions P(c), E(ErrA1
|c, D) = E(ErrA2

|c, D).

NFL corollaries:

■ You can try hard to build one super algrithm and one terrible algorith, averaged over all concepts, both algorithms are equally
good.

■ If A1 is better than A2 on certain kind of problems, there must be other kind of problems where A2 is better than A1.

■ All statements like “alg. 1 is better than alg. 2” are not saying anything about the algorithms, but rather about the set of concepts
which were used to test the algorithms.

■ In practice, for certain application area, we seek an algorithm which

■ works worse on problems we do not expect in the field, while

■ works well on problems which are highly probable.

■ Generalization is not possible without (often implicit) bias of the algorithm!

■ The more the model assumptions correspond to the data, the better the generalization ability of the model!
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Bias

Inductive bias (předpojatost, zaujetı́ modelu):

■ the sum of all (even implicit) assumptions the model makes about the application area

■ taking advantage of these assumptions allows the model to generalize, i.e. to provide correct predictions even for unknown
data, if these assumptions correspond to reality

Possible sources of model bias:

■ Language bias:

■ The language of hypotheses does not need to correspond to the language of concepts.

■ Some concepts cannot be expressed in the hypotheses bias.

■ Different language may allow for efficient learning.

■ Preference bias:

■ Algorithm prefers some of the hypotheses consistent with D.

■ Algorithm may even choose a slightly inconsistent hypothesis.

■ Occam’s razor

■ . . .

P. Pošı́k c© 2014 Artificial Intelligence – 9 / 22
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PAC learning

Probably Approximately Correct (PAC) learning:

■ Characterizes the concept classes which are/are not learneable by certain class of hypotheses

■ using a “reasonable” number of training examples and

■ using an algorithm with “reasonable” computational complexity,

for both

■ finite hypotheses spaces and

■ infinite hypotheses space (capacity, VC dimension).

■ Defines a natural measure of complexity of the hypotheses spaces (VC dimension) which allows us to bound the required size of
training data for inductive learning.

PAC learning assumptions:

■ Independence: Examples Ei = (xi , ci) are sampled independently, i.e. P(Ei |Ei−1, Ei−2, . . .) = P(Ei).

■ Identically distributed: Future examples shall be sampled from a distribution equal to the one used for the previous examples:
P(Ei) = P(Ei−1) = . . ..

■ Both conditions together are often denoted as “i.i.d.” (independent and identically distributed).

(In this lecture we also assume that concept c is deterministic and that it is part of the hypotheses space H).

P. Pošı́k c© 2014 Artificial Intelligence – 11 / 22
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Hypothesis error rate

Real error rate of hypothesis h

■ with regard to the target concept c and

■ with regard to the distribution of examples P(X) is

Err(h) = ∑
x∈X

I(h(x) 6= c(x)) · P(x),

■ i.e. it is the probability that the hypothesis classifies example x incorrectly.

Hypothesis h is approximately correct or ǫ-approximately correct,

■ if Err(h) ≤ ǫ,

■ where ǫ is a small constant.

Is it possible to determine the number of training examples required to learn concept c with 0 error rate?

■ If the set of training examples D is only a subset of X, there are still several hypotheses consistent with D (see NFL).

■ Training examples are chosen randomly and can be misleading.

P. Pošı́k c© 2014 Artificial Intelligence – 12 / 22

PAC framework

PAC framework defines what it actually means to successfully learn a concept.

■ It does not require the ability to learn any concept that can be defined over X:

■ We are interested in certain subsets of all concepts C ⊆ 2X . (Some concepts cannot be learned, e.g. when C is infinite and H
is finite.)

■ Similarly, algorithm A will search for an appropriate hypothesis in certain hypotheses class H only.

■ C = H may, but does not have to be fulfilled.

■ It does not require zero error of the learned hypothesis h.

■ The hypothesis error rate is bounded with a small constant ǫ.

■ It does not require the algorithm to produce the hypothesis with an acceptable error rate each time.

■ The probability of this event is however bounded by a small constant δ.

A concept class C is PAC-learnable using the hypotheses class H if

■ for all concepts c ∈ C, all distributions P(X), X = {0, 1}n, and for any 0 < ǫ, δ < 1

■ there is a polynomial algorithm A, which returns a hypothesis with Err(h) ≤ ǫ with probability at least 1 − δ

■ using at most polynomial amount of training examples (xi , c(xi)) sampled from P(X).

■ “Polynomial”: growing at most at polynomial rate with 1
ǫ

, 1
δ

and n.

P. Pošı́k c© 2014 Artificial Intelligence – 13 / 22
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Consistent PAC learning

A consistent learning algorithm

■ returns a hypothesis h ∈ H consistent with D

■ for any i.i.d. sample D (training data) of the concept c ∈ C.

Sample complexity:

■ The size m of the training set D required to PAC-learn the concept c using H.

■ It grows with the problem dimensionality (with the number n of object attributes).

■ It represents a bound for the training set size for consistent learning algorithms.

How many training examples do we need to be able to say that with a sufficiently high probability all consistent hypotheses are
approximately correct?

■ Let’s denote the set of bad hypotheses HB = {h ∈ H : Err(h) > ǫ}, hB ∈ HB.

■ Pr(hB is consistent with 1 training example) ≤ 1 − ǫ

■ Pr(hB is consistent with all training examples) ≤ (1 − ǫ)m
(Examples are independent.)

■ Pr(HB contains a hypothesis consistent with all training examples) ≤ |HB|(1 − ǫ)m ≤ |H|(1 − ǫ)m

Probability that a consistent hypothesis is not approximately correct.

■ Let’s bound the probability of this event with a small constant δ: |H|(1 − ǫ)m ≤ δ.

■ Using 1 − ǫ ≤ e−ǫ:

m ≥
1

ǫ
(ln

1

δ
+ ln |H|)

If h is consistent with m examples, then Err(h) ≤ ǫ with the probability at least 1 − δ.

P. Pošı́k c© 2014 Artificial Intelligence – 14 / 22

Sample complexity

Složitost vzorku:

m ≥
1

ǫ
(ln

1

δ
+ ln |H|)

Let H be the class of all boolean functions over n attributes:

■ |H| = 22n

■ Sample complexity m grows like ln |H|, i.e. like 2n.

■ But the maximal training set size grows like 2n as well.

■ PAC-learning in the class of all boolean functions requires training on all (or almost all) possible training examples!

■ Reason:

■ H contains enough hypotheses to classify any set of examples in any way.

■ For any training set of m examples, the number of hypotheses consistent with the training data which classify example
xm+1 as positive is the same as the number of consistent hypotheses which classify this example as negative.

■ See NFL: to allow for any generalization, we need to constrain the hypotheses space H.

Observation: m is a function of |H|:

■ If we get an additional information (constraint limiting the class of admissible hypotheses) and embed it in the training
algorithm (introduce bias), then a lower number of training examples shall be sufficient!

■ Domain knowledge plays an important role.

P. Pošı́k c© 2014 Artificial Intelligence – 15 / 22
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Example: Decision list

Decision list (DL)

■ is a sequence of tests (each test is a conjunction of literals).

■ If a test succeeds, DL returns the class assigned to that test. Otherwise it continues with another test.

■ Unconstrained DL can represent any boolean function!

Let’s constrain the hypotheses space H to the language k-DL:

■ Set of decision lists where each test is a conjunction of at most k literals.

■ The k-DL language contains the language k-DT (set of decision trees with the depth at most k) as its subset.

■ The particular instance of the k-DL language depends on the set of attributes (the representation used).

■ Let k-DL(n) be the k-DL language over n Boolean attributes.

How can we show that the hypotheses class k-DL is PAC-learnable?

1. Show that sample complexity is at most polynomial (see next slide).

2. Show that there is a learning algorithm with at most polynomial computational complexity. (Not presented, but e.g. CN2
algorithm will do.)

P. Pošı́k c© 2014 Artificial Intelligence – 16 / 22

Example: Decision list (cont.)

Let’s show that any hypothesis from k-DL can be accurately approximated by learning from a training set of reasonable a size:

■ We need to estimate the number of hypotheses in the language.

■ Let Conj(n, k) be the set of tests (conjunctions of at most k literals over n attributes).

■ Each test is assigned with an output value “Yes”, “No”, or it does not have to be present in the list at all, thus there are at most

3|Conj(n,k)| different sets of tests.

■ Each of these sets of test may be used in an arbitrary order, thus |k−DL(n)| ≤ 3|Conj(n,k)| · |Conj(n, k)|!.

■ The number of at most k literals with n attributes: |Conj(n, k)| = ∑
k
i=0 (

2n
i ) = O(nk).

2n, since the conjuction can contain each individual attribute test directly or in negation.

■ After simplification: k−DL(n) = 2O(nk log2(n
k))

■ Substituting this result for |H| to the sample complexity equation: m ≥ 1
ǫ

(

ln 1
δ
+O

(

nk log2(n
k)
)

)

■ m grows polynomially with n

■ Any algorithm that returns a k-DL consistent with training data will PAC-learn a k-DL concept with a reasonable training set
size.

P. Pošı́k c© 2014 Artificial Intelligence – 17 / 22
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Example: DNF Formulas

Disjunctive normal form (DNF):

■ Objects described with n Boolean attributes a1, . . . , an.

■ DNF formula: a disjunction of conjunctions, e.g. (a1 ∧ ¬a2 ∧ a5) ∨ (¬a3 ∧ a4)

What is the size of the hypotheses space H:

■ 3n possible conjunctions.

■ |H| = 23n
possible disjunctions of conjunctions.

■ ln |H| = 3n ln 2 is not polynomial in n.

■ We have not succeeded in showing that DNF formulas are PAC-learnable. (But we neither showed the opposite.)

PAC-learning of DNF formulas is still an open problem.
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Examples of results for PAC learning

1. Conjunctive concepts are PAC-learnable, but
concepts in the form of a disjunction of 2 conjunctions are not PAC-learnable.

2. Linearly separable concepts (perceptrons) are PAC-learnable in both Boolean and real spaces. But
a conjunction of 2 perceptrons is not PAC-learnable, similarly to a disjunction of 2 perceptrons and multylayerperceptrons with
2 hidden units.If we additionally constrain the weights to values 0 and 1, then even perceptrons in Boolean space are not
PAC-learnable.

3. The classes k-CNF, k-DNF and k-DL are PAC-learnable for a given k. But
we do not know if DNF formulas, CNF formulas, or decision trees are PAC-learnable.

P. Pošı́k c© 2014 Artificial Intelligence – 19 / 22
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VC dimension

Disadvantages of using |H| in the sample complexity formula:

■ Results in a worst-case estimate.

■ It is often very pessimistic, it overesimates the number of required training examples.

■ |H| cannot be used for infinite hypotheses spaces.

Capacity, Vapnik-Chervonenkis dimension VC(H)

■ Another measure of the complexity (flexibility) of the hypotheses class H: it quantifies the bias of embodied in ceartain
hypotheses class H.

■ Applicable even for infnite H.

■ Can provide a tighter bound for the sample complexity.

■ Definition: VC(H) is the maximal number d of examples x ∈ X such that for each of 2d different labelings of x1, . . . , xd there is a
hypothesis h ∈ H consistent with these d examples.

Sample complexity using VC dimension:

■ Hypotheses space H, concepts space C, C ⊆ H.

■ Sample complexity for any consistent algorithm learning c ∈ C using H is

m ≥
1

ǫ

(

4 log2

2

δ
+ 8 · VC(H) · log2

13

ǫ

)
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VC dimension (cont.)

VC dimensions for certain hypotheses classes H:

■ VC dimension of a linear discriminant function in 1D space? 2.
Lin. discr. function is not able to correctly represent all possible concepts examplified by 3 or more points in 1D space.

■ VC dimension of a linear discriminant function in 2D space? 3.
Lin. discr. function is not able to correctly represent all possible concepts examplified by 4 or more points in 2D space.

■ Generally, for linear discriminant function fn(x) = w0 + w1x1 + . . . + wnxn in n-dimensional space: VC( fn) = n + 1

■ Example of 1D function f with VC( f ) = ∞: f (x) = sin(αx)
It can be shown that sin(αx) can in 1D space correctly classify any number of examples.

■ VC dimension of SVM with RBF kernel without any constraint on the penalty term: VC( fSVM−RBF) = ∞

Other uses of VC dimension:

■ Estimation of a true (testing) error of a classifier on the basis of the training data only.

■ “Structural risk minimization”, the basic principle of SVM.
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Summary

■ Generalization requires bias!!!

■ NFL: All models/algorithms are equally good on average.

■ If a certain class of models works better for certain class of problems, there must be another class of problems, for which it
workse worse.

■ Our goal is to find models/algorithms which

■ work well for problem classes often observed in practice, and

■ have below average performace on problem classes which are not practically important.

■ Probably Approximately Correct (PAC) learning:

■ specifies what it means to “learn correctly”.

■ introduces tolerances for the model error (ǫ) and for the probability (δ) that a learned model has a larger error than ǫ.

■ allows to estimate the required training set size.

■ VC dimension:

■ a measure of flexibility of (even infinite) hypotheses class.

■ usually provides tighter estimates of the sample complexity than the formula with |H|.
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