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Bias-variance trade-off.
Crossvalidation. Regularization.

Petr Pošı́k
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Fundamental question: What is a good measure of “model quality” from the machine-learning
standpoint?
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Fundamental question: What is a good measure of “model quality” from the machine-learning
standpoint?

■ We have various measures of model error:

■ For regression tasks: MSE, MAE, . . .

■ For classification tasks: misclassification rate, measures based on confusion matrix, . . .

■ Some of them can be regarded as finite approximations of the Bayes risk.

■ Are these functions good approximations when measured on the data the models were trained on?
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A basic method of evaluation is model validation on a different, independent data set from the same source, i.e.
on testing data.



Validation on testing data
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Example: Polynomial regression with varrying degree:

X ∼ U(−1, 3)

Y ∼ X2 + N(0, 1)
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Training and testing error

How to evaluate a
predictive model?

• Model evaluation
• Training and testing
error

• Overfitting

• Bias vs Variance

• Crossvalidation
• How to determine a
suitable model
flexibility

• How to prevent
overfitting?

Regularization
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■ The training error decreases with increasing model flexibility.

■ The testing error is minimal for certain degree of model flexibility.
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Definition of overfitting:

■ Let H be a hypothesis space.

■ Let h ∈ H and h′ ∈ H be 2 different hypotheses from
this space.

■ Let ErrTr(h) be an error of the hypothesis h
measured on the training dataset (training error).

■ Let ErrTst(h) be an error of the hypothesis h
measured on the testing dataset (testing error).

■ We say that h is overfitted if there is another h′ for
which

ErrTr(h) < ErrTr(h
′) ∧ ErrTst(h) > ErrTst(h

′)
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Model Flexibility
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Testing data

■ “When overfitted, the model works well for the training data, but fails for new (testing) data.”

■ Overfitting is a general phenomenon affecting all kinds of inductive learning.
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■ “When overfitted, the model works well for the training data, but fails for new (testing) data.”

■ Overfitting is a general phenomenon affecting all kinds of inductive learning.

We want models and learning algorithms with a good generalization ability, i.e.

■ we want models that encode only the patterns valid in the whole domain, not those that learned the
specifics of the training data,

■ we want algorithms able to find only the patterns valid in the whole domain and ignore specifics of the
training data.
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High variance problem:

■ ErrTr(h) is low

■ ErrTst(h) >> ErrTr(h)



Crossvalidation

How to evaluate a
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• Model evaluation
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error
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• Bias vs Variance
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• How to determine a
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Simple crossvalidation:

■ Split the data into training and testing subsets.

■ Train the model on training data.

■ Evaluate the model error on testing data.
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Simple crossvalidation:

■ Split the data into training and testing subsets.

■ Train the model on training data.

■ Evaluate the model error on testing data.

K-fold crossvalidation:

■ Split the data into k folds (k is usually 5 or 10).

■ In each iteration:

■ Use k − 1 folds to train the model.

■ Use 1 fold to test the model, i.e. measure error.

Iter. 1 Training Training Testing
Iter. 2 Training Testing Training
Iter. k Testing Training Training

■ Aggregate (average) the k error measurements to get the final error estimate.

■ Train the model on the whole data set.
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Simple crossvalidation:

■ Split the data into training and testing subsets.

■ Train the model on training data.

■ Evaluate the model error on testing data.

K-fold crossvalidation:

■ Split the data into k folds (k is usually 5 or 10).

■ In each iteration:

■ Use k − 1 folds to train the model.

■ Use 1 fold to test the model, i.e. measure error.

Iter. 1 Training Training Testing
Iter. 2 Training Testing Training
Iter. k Testing Training Training

■ Aggregate (average) the k error measurements to get the final error estimate.

■ Train the model on the whole data set.

Leave-one-out (LOO) crossvalidation:

■ k = |T|, i.e. the number of folds is equal to the training set size.

■ Time consuming for large m.
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Using simple crossvalidation:

1. Training data: use cca 50 % of data for model building.

2. Validation data: use cca 25 % of data to search for the suitable model flexibility.

3. Train the suitable model on training + validation data.

4. Testing data: use cca 25 % of data for the final estimate of the model error.
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2. Validation data: use cca 25 % of data to search for the suitable model flexibility.

3. Train the suitable model on training + validation data.
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Using k-fold crossvalidation

1. Training data: use cca 75 % of data to find and train a suitable model using
crossvalidation.

2. Testing data: use cca 25 % of data for the final estimate of the model error.
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Using simple crossvalidation:

1. Training data: use cca 50 % of data for model building.

2. Validation data: use cca 25 % of data to search for the suitable model flexibility.

3. Train the suitable model on training + validation data.

4. Testing data: use cca 25 % of data for the final estimate of the model error.

Using k-fold crossvalidation

1. Training data: use cca 75 % of data to find and train a suitable model using
crossvalidation.

2. Testing data: use cca 25 % of data for the final estimate of the model error.

The ratios are not set in stone, there are other possibilities, e.g. 60:20:20, etc.
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1. Reduce number of features.

■ Select manually, which features to keep.

■ Try to identify a suitable subset of features during learning phase.

2. Regularization

■ Keep all features, but reduce the magnitude of parameters w.

■ Works well, if we have a lot of features each of which contributes a bit to
predicting y.
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Ridge regularization penalizes the size of the
model coefficients:

■ Modification of the optimization criterion:

J(w) =
1

|T|

|T|

∑
i=1

(

y(i) − hw(x(i))
)2

+α

D

∑
d=1

w2
d.

■ The solution is given by a modified Normal
equation

w∗ = (XT X+αI)−1XTy

■ As α → 0, wridge → wOLS.

■ As α → ∞, wridge → 0.

Training and testing errors as functions of
regularization parameter:
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Lasso regularization penalizes the size of the
model coefficients:

■ Modification of the optimization criterion:

J(w) =
1

|T|

|T|

∑
i=1

(

y(i) − hw(x(i))
)2

+α

D

∑
d=1

|wd|.

■ Solution is usually found by quadratic
programming.

■ As α → ∞, Lasso regularization decreases the
number of non-zero coefficients.

Training and testing errors as functions of
regularization parameter:
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