

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering Department of Cybernetics

Artificial life

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

What is artificial life?

Definition

Artificial life as a science discipline

- studies artificial systems mimicking some features of living systems and their processes.
- Simulations are the main tool of research.
 - Types of ALife:
 - Soft alife: simulations by means of software
 - Hard alife: simulations by means of hardware (robotics)
 - Wet alife: "in vitro simulations" (biochemistry)
 - In a narrower sense, "alife" usually refers to the soft alife.
 - **Emergence**¹: simple behavior of individuals \rightarrow complex behavior of the whole system

What is artificial life?

- Definition
- Conway's Game of Life
- Game of Life:
- example
- configurations
- Game of Life: Demo
- Game of Life: Only
- a toy?
- Examples of other alife systems

Celular automata

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

Conway's Game of Life

- Cells in a rectangular grid (infinite, with zero boundary conditions, or torroidal).
- Each cell is either living or dead.
- The state of the cell depends on its previous state and on the states of the surrounding cells.
- The state of all cells changes synchronously (all at once).
- All cells are controlled by the same rules:
 - 1. A living cell with less than 2 living neighbours dies (insufficient inhabitation).
 - 2. A living cell with more than 3 living neighbors dies (starvation).
 - 3. A living cell with 2 or 3 neighbors survives.
 - 4. A dead cell with exactly 3 neighbors revives.

What is artificial life?

• Definition

• Conway's Game of Life

- Game of Life: example configurations
- Came of Life: Der
- Game of Life: DemoGame of Life: Only
- Game of Life: Unl
- a toy?
- Examples of other alife systems

Celular automata

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

Conway's Game of Life

- Cells in a rectangular grid (infinite, with zero boundary conditions, or torroidal).
- Each cell is either living or dead.
- The state of the cell depends on its previous state and on the states of the surrounding cells.
- The state of all cells changes synchronously (all at once).
- All cells are controlled by the same rules:
 - 1. A living cell with less than 2 living neighbours dies (insufficient inhabitation).
 - 2. A living cell with more than 3 living neighbors dies (starvation).
 - 3. A living cell with 2 or 3 neighbors survives.
 - 4. A dead cell with exactly 3 neighbors revives.
 - The rules can be simplified: a cell is alive in the next generation if
 - 1. it has 3 living neighbors, or
 - 2. it is alive and has 2 living neighbors.
 - The behavior of the whole system depends on the initial pattern only!

• Conway's Game of Life • Game of Life:

What is artificial life?

example configurations

Definition

- Game of Life: Demo
- Game of Life: Only
- a toy?
- Examples of other alife systems
- Celular automata
- Ant colonies
- Particle Swarm
- Evolutionary (genetic) algorithms
- Conclusions

Block:

Definition

• Conway's Game of Life

What is artificial life?

• Game of Life: example configurations

• Game of Life: Demo

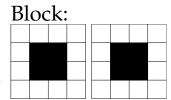
• Game of Life: Only

a toy?

• Examples of other

alife systems

Celular automata


Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

What is artificial life?

Definition

• Conway's Game of Life

- Game of Life: Demo
- Game of Life: Only
- a toy?
- Examples of other alife systems

Celular automata

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

Conclusions

P. Pošík © 2015

Artificial Intelligence – 5 / 23

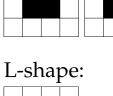
- Definition
- Conway's Game of Life

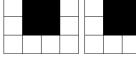
• Game of Life: example

configurations

- Game of Life: Demo
- Game of Life: Only
- a toy?
- Examples of other alife systems

Celular automata


Ant colonies


Particle Swarm

Evolutionary (genetic) algorithms

Conclusions

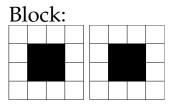
P. Pošík © 2015

Block:

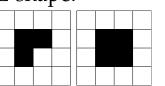
- Definition
- Conway's Game of Life
- Game of Life: example

configurations

- Game of Life: Demo
- Game of Life: Only
- a toy?
- Examples of other alife systems


Celular automata

Ant colonies


Particle Swarm

Evolutionary (genetic) algorithms

Conclusions

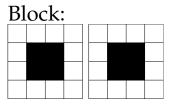
L-shape:

- Definition
- Conway's Game of Life

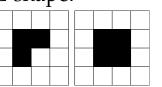
• Game of Life: example

configurations

- Game of Life: Demo
- Game of Life: Only
- a toy?
- Examples of other alife systems


Celular automata

Ant colonies


Particle Swarm

Evolutionary (genetic) algorithms

Conclusions

L-shape:

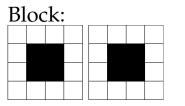
Blinker:											

- Definition
- Conway's Game of Life

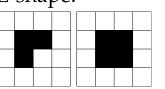
• Game of Life: example

configurations

- Game of Life: Demo
- Game of Life: Only a toy?
- a toy?
- Examples of other alife systems


Celular automata

Ant colonies


Particle Swarm

Evolutionary (genetic) algorithms

Conclusions

L-shape:

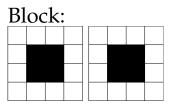
Blinker:

- Definition
- Conway's Game of Life

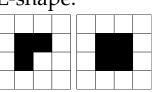
• Game of Life: example

configurations

- Game of Life: Demo
- Game of Life: Only
- a toy?
- Examples of other alife systems


Celular automata

Ant colonies


Particle Swarm

Evolutionary (genetic) algorithms

Conclusions

L-shape:

Blinker:

1/(-1.							

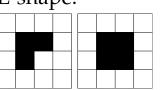
- Definition
- Conway's Game of Life

• Game of Life: example

configurations

- Game of Life: Demo
- Game of Life: Only a toy?
- Examples of other alife systems

Celular automata

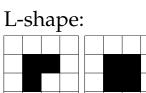

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

Conclusions

Block:



Blinker:

1/(-1.							

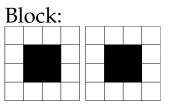
Glider:

- Definition
- Conway's Game of Life

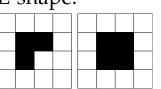
• Game of Life: example

- configurations
- Game of Life: Demo
- Game of Life: Only a toy?
- Examples of other alife systems

Celular automata


Ant colonies

Particle Swarm


Evolutionary (genetic) algorithms

P. Pošík © 2015

Conclusions

L-shape:

Blinker:

L	1/1	-1.							

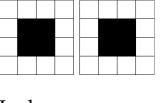
Glider:

Artificial Intelligence – 5 / 23

- Definition
- Conway's Game of Life

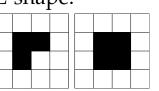
• Game of Life: example

- configurations
- Game of Life: Demo
- Game of Life: Only a toy?
- Examples of other alife systems


Celular automata

Ant colonies

Particle Swarm


Evolutionary (genetic) algorithms

Conclusions

L-shape:

Block:

Blinker:

L	111	-1.							

Glider:

Game of Life: Demo

t=123, pop= 68

::

•

..:

Game of Life: Only a toy?

- Conway formulated a hypothesis that in GoL one cannot create a configuration which will grow infinitely.
 - It was refuted very soon (Glider Gun, ...)
- It turned out that it is possible to create blocks which work as logic functions AND, OR, NOT, ...
- GoL has the power of universal Turing machine!

http://www.igblan.free-online.co.uk/igblan/ca/

GoL can generate

. . .

- prime numbers, http://pentadecathlon.com/lifeNews/2010/02/prime_numbers.html, http://www.youtube.com/watch?v=68nEX5CEmZE
- Ludolfine number π and golden section ϕ http://pentadecathlon.com/lifeNews/2011/01/phi_and_pi_calculators.html

What is artificial life?

• Conway's Game of

• Definition

• Game of Life: example

configurations

Life

Examples of other alife systems

- Celular automata (1D and 2D version)
- Evolutionary algorithms
- Ant colonies

. . .

- Swarm optimization
- Multiagent systems
- Neural networks
- Game of Life: Demo
- Game of Life: Only a toy?
- Examples of other alife systems
- Celular automata
- Ant colonies
- Particle Swarm
- Evolutionary (genetic) algorithms
- Conclusions

Ø	3	E	J)	\heartsuit
		I	Z	\bigcirc
$\ $	ľ	59	J	7
V	5	3	4	S

• Conway's Game of

• Game of Life: Demo

• Game of Life: Only

• Examples of other alife systems

• Definition

• Game of Life: example

configurations

Life

a toy?

Examples of other alife systems

- Celular automata (1D and 2D version)
- Evolutionary algorithms
- What is artificial life? Ant colonies

. . .

- Swarm optimization
- Multiagent systems
- Neural networks

Examples of the behavior of the above mentioned system can be found e.g. in

── ■ MASON, or	http://cs.gmu.edu/~eclab/projects/mason/
── ■ NetLogo	http://ccl.northwestern.edu/netlogo/models/index.cgi

Particle Swarm

Ant colonies

Celular automata

Evolutionary (genetic) algorithms

Celular automata

1D celular automata

- The cells form a string (infinite, with zero boundary conditions, or cyclic)
- $s_i(t)$: the state of *i*th cell in time *t*.
- What is artificial life?
- Celular automata
- 1D celular automata
- Real-world application of CA
- 2D cellular
- automaton

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

- A **rule** describes the future state of cell based on its current state and the state of the neighboring cells.
- A rule has the form $\{s_{i-1}(t), s_i(t), s_{i+1}(t)\} \rightarrow s_i(t+1)$
- How many rules can be created for such a 1D CA?

1D celular automata

- The cells form a string (infinite, with zero boundary conditions, or cyclic)
- $s_i(t)$: the state of *i*th cell in time *t*.
- What is artificial life?

Celular automata

- 1D celular automata
- Real-world application of CA
- 2D cellular
- automaton

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

- A **rule** describes the future state of cell based on its current state and the state of the neighboring cells.
- A rule has the form $\{s_{i-1}(t), s_i(t), s_{i+1}(t)\} \rightarrow s_i(t+1)$
- How many rules can be created for such a 1D CA?

State of the neighborhood												
111	110	101	100	011	010	001	000	Rule number				
0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	1	1				
0	0	0	1	1	1	1	0	30				
0	0	1	0	1	1	0	1	45				
0	1	0	1	1	0	1	0	90				
1	0	0	1	0	1	1	0	150				
1	1	0	0	1	0	0	0	200				
1	1	1	1	1	1	1	0	254				
1	1	1	1	1	1	1	1	255				

Pseudo-random number generator: bit stream generated by the cellular automaton

What is artificial life?

Celular automata

• 1D celular automata

• Real-world application of CA

• 2D cellular automaton

Ant colonies

Particle Swarm

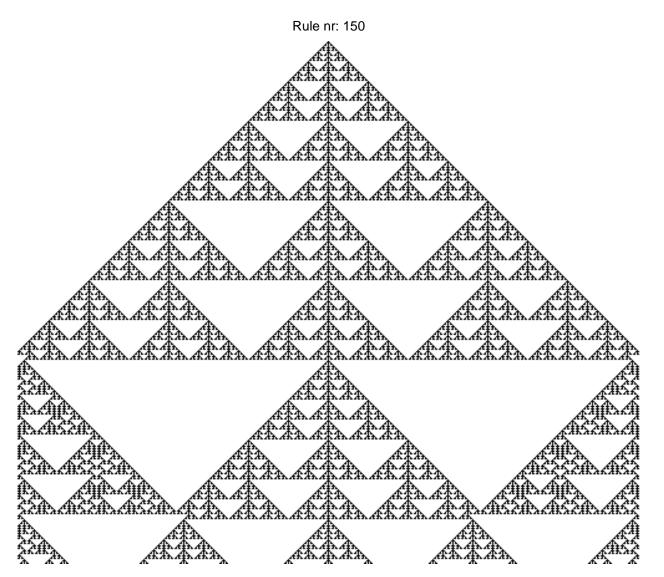
Evolutionary (genetic) algorithms

Pseudo-random number generator: bit stream generated by the cellular automaton

What is artificial life?

Celular automata

• 1D celular automata


• Real-world application of CA

• 2D cellular automaton

Ant colonies

Particle Swarm

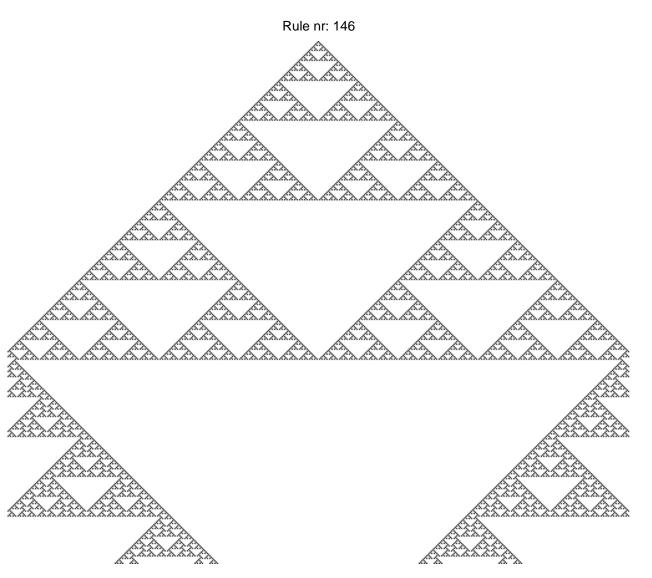
Evolutionary (genetic) algorithms

Pseudo-random number generator: bit stream generated by the cellular automaton

What is artificial life?

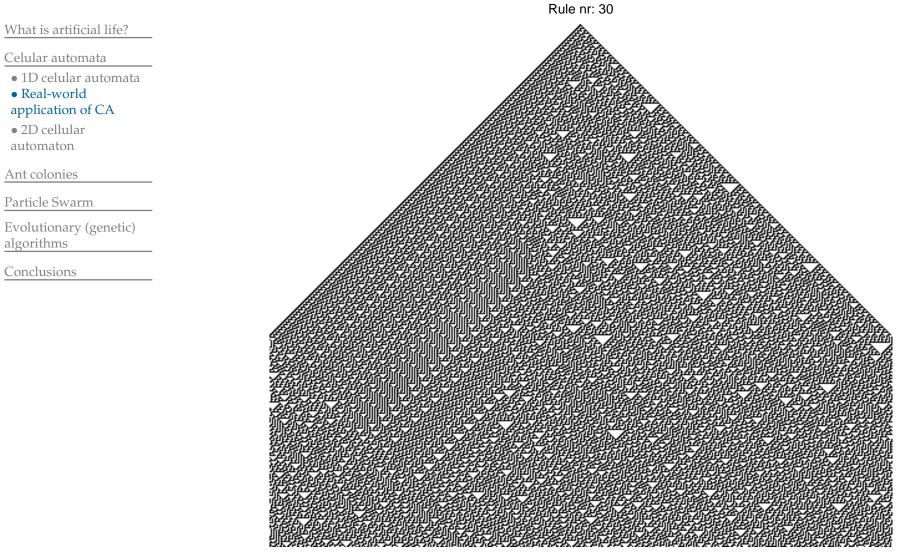
Celular automata

• 1D celular automata


• Real-world application of CA

• 2D cellular automaton

Ant colonies


Particle Swarm

Evolutionary (genetic) algorithms

Pseudo-random number generator: bit stream generated by the cellular automaton

- Example: Convay's Game of Life
- How many rules can be constructed for GoL-type 2D CA?

What is artificial life?

Celular automata

- 1D celular automata
- Real-world

application of CA

• 2D cellular automaton

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

- Example: Convay's Game of Life
- How many rules can be constructed for GoL-type 2D CA?
 - Number of different configurations of the neighborhood:

What is artificial life?

Celular automata

- 1D celular automata
- Real-world

application of CA

• 2D cellular automaton

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

- Example: Convay's Game of Life
- How many rules can be constructed for GoL-type 2D CA?
 - Number of different configurations of the neighborhood: 2⁹

What is artificial life?

Celular automata

- 1D celular automata
- Real-world

application of CA

• 2D cellular automaton

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

- Example: Convay's Game of Life
- How many rules can be constructed for GoL-type 2D CA?
 - Number of different configurations of the neighborhood: 2⁹
 - Number of possible rules:

What is artificial life?

Celular automata

• 1D celular automata

• Real-world

application of CA

• 2D cellular automaton

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

- Example: Convay's Game of Life
- How many rules can be constructed for GoL-type 2D CA?
 - Number of different configurations of the neighborhood: 2⁹
 - Number of possible rules: $2^{2^9} \approx 1.34 \cdot 10^{154}$

What is artificial life?

Celular automata

- 1D celular automata
- Real-world

application of CA

• 2D cellular automaton

Ant colonies

Particle Swarm

Evolutionary (genetic) algorithms

Ant colonies

Ant colonies: principle

Typical application: search for the shortest path in a graph

- Ants usually do not communicate directly, they use a *pheromone*:
 - They lay pheromone to places they walked through.
 - Artificial ants can lay and detect more than 1 type of pheromone.
 - Artificial ants can deploy a varying amount of pheromone according to the length of the path they found.
 - Pheromone evaporates.
- Ants can be attracted or distracted by the pheromone.
- The decision where to go next is stochastic, but is influenced by the amount of pheromone.

What is artificial life?

- Principle
- Example

Particle Swarm

Evolutionary (genetic) algorithms

Ant colonies: principle

Typical application: search for the shortest path in a graph

- Ants usually do not communicate directly, they use a *pheromone*:
 - They lay pheromone to places they walked through.
 - Artificial ants can lay and detect more than 1 type of pheromone.
 - Artificial ants can deploy a varying amount of pheromone according to the length of the path they found.
 - Pheromone evaporates.
- Ants can be attracted or distracted by the pheromone.
- The decision where to go next is stochastic, but is influenced by the amount of pheromone.

Example on the following slides:

- Source: MASON http://cs.gmu.edu/~eclab/projects/mason/
- Two types of pheromone:
 - Green: deployed when searching for food; the closer to the nest, the higher the intensity
 - Blue: deployed when bringing food back to the nest; the closer to the food source, the higher the intensity
- Ants have 2 modes:
 - Black: searches for food, follows blue pheromone, deploys green pheromone
 - Red: brings food to the nest, follows green pheromone, deploys blue pheromone

Ant colonies • Principle

Celular automata

What is artificial life?

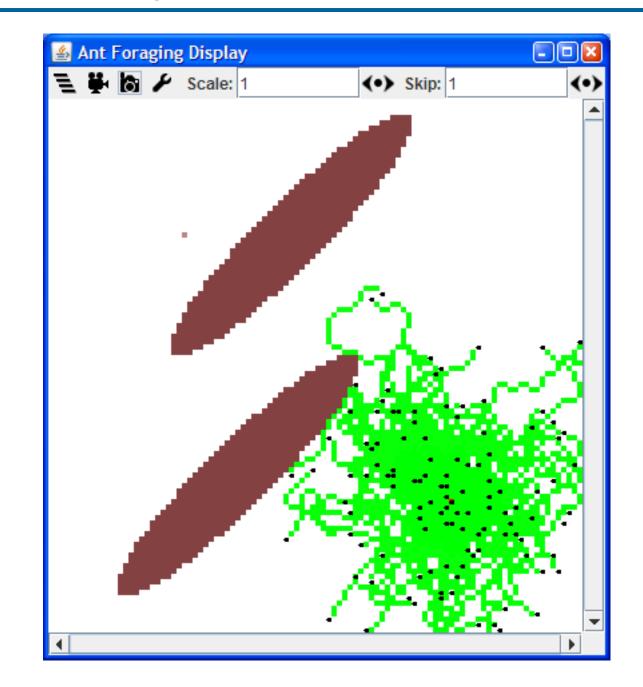
• Example

Particle Swarm

Evolutionary (genetic) algorithms

Ant colonies: Example

Celular automata


Ant colonies

• Principle

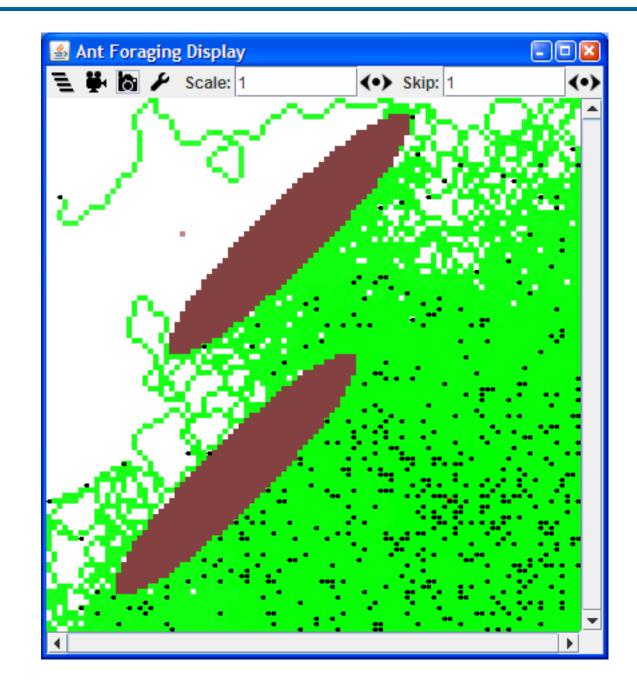
• Example

Particle Swarm

Evolutionary (genetic) algorithms

Ant colonies: Example

Celular automata


Ant colonies

• Principle

• Example

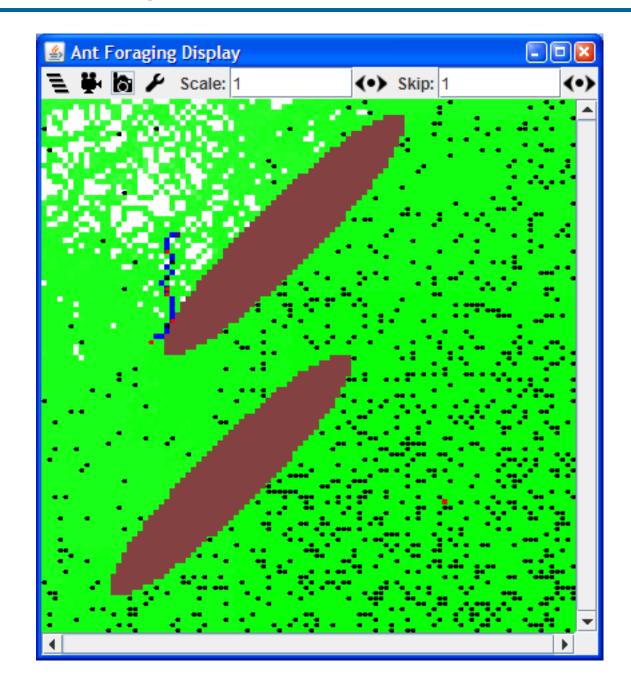
Particle Swarm

Evolutionary (genetic) algorithms

Ant colonies: Example

What is artificial life?

Celular automata


Ant colonies

• Principle

• Example

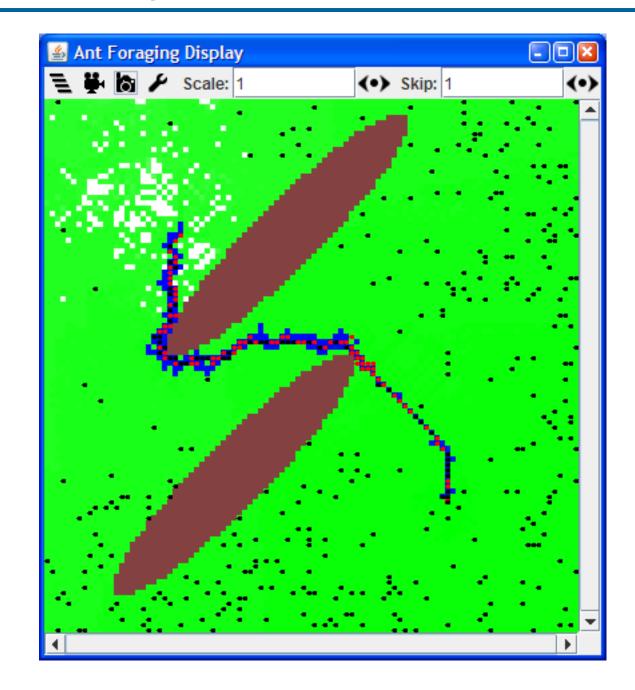
Particle Swarm

Evolutionary (genetic) algorithms

Ant colonies: Example

What is artificial life?

Celular automata


Ant colonies

• Principle

• Example

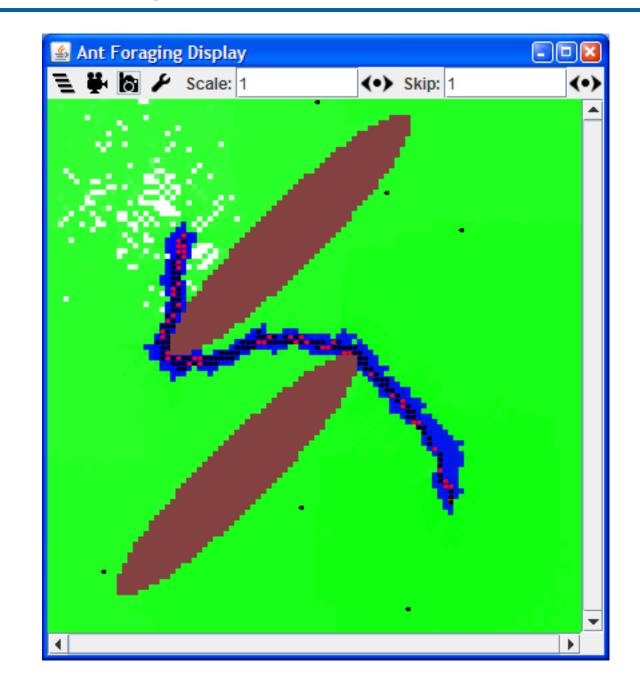
Particle Swarm

Evolutionary (genetic) algorithms

Ant colonies: Example

What is artificial life?

Celular automata


Ant colonies

• Principle

• Example

Particle Swarm

Evolutionary (genetic) algorithms

Particle Swarm

Particle swarm: Motivation and principle

Inspiration:

bird flocks and fish schools

What is artificial life?

Celular automata

Ant colonies

Particle Swarm

- Motivation
- Demo
- PSO

Evolutionary (genetic) algorithms

Conclusions

The particle position update rule usually contains several parts:

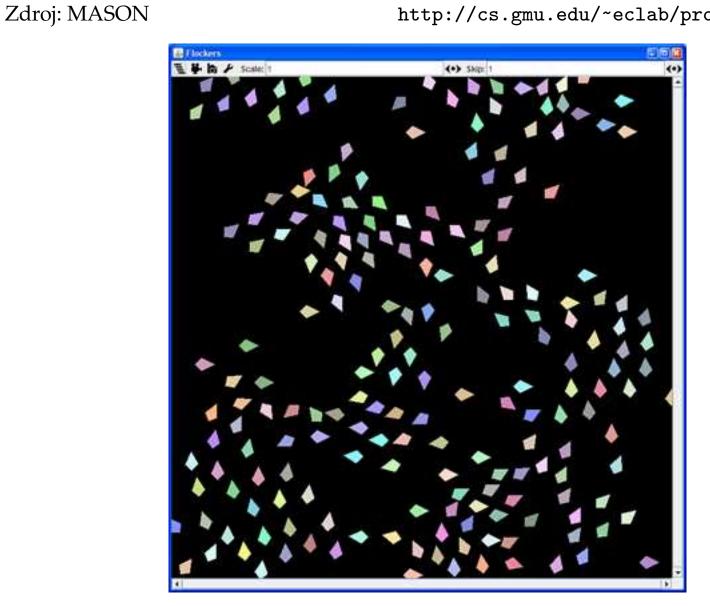
- continue in your current direction,
- prevent collisions with obstacles and other particles,
- modify your direction according to your neighbors, and
- add a stochastic component.
- Applications:
 - Simulations of the flock moves.
 - With a bit different rules, simulations of human crowds behavior, e.g. in case of rush hours, emergencies, catastrophes, ...
 - Optimization (Particle Swarm Optimization)

Particle swarm: Demo

What is artificial life?

Celular automata

Ant colonies


Particle Swarm

- Motivation
- Demo
- PSO

Evolutionary (genetic) algorithms

Conclusions

http://cs.gmu.edu/~eclab/projects/mason/

What is artificial life?

Celular automata

Ant colonies

Particle Swarm Motivation • Demo

Particle swarm optimization (PSO)

The task is to find the optimum of an objective function; this function says how good a candidate solution represented by a particle is.

Update rule for the position of the *i*th particle:

$$v_i(t+1) = w \cdot v_i(t) + r_1 \cdot \phi_p(p_i - x_i(t)) + r_2 \cdot \phi_g(g - x_i(t)),$$

$$x_i(t+1) = x_i(t) + v_i(t+1),$$

where

Evolutionary (genetic) algorithms

Conclusions

PSO

- - $x_i(t)$ is the position of the *i*th particle in time t,
 - $v_i(t)$ is the speed of the *i*th particle in time *t*,
 - p_i is the best position visited by the *i*th particle (personal best),
- g is the best position visited by any member of the swarm (global best),
- w, ϕ_{v} and ϕ_{g} are the momentum, attraction factor to the personal best, and to the global best position,
- r_1 and r_2 are random vectors uniformly distributed between **0** and **1**.

Demo:

http://www.stud.fit.vutbr.cz/~xgraiz00/pso/applet.html

Evolutionary (genetic) algorithms

EA: Motivation and principle

The task is to find the optimum of an objective function; this function says how good a candidate solution represented by an individual in a population is.

What is artificial life? Celular automata Ant colonies Particle Swarm

Evolutionary (genetic) algorithms

• Princip

Conclusions

Evolutionary optimization algorithms model the principles of

- Mendel's theory of genetics and
- Darwin's theory of natural selection.
 - They work with a *population* of candidate solutions.

____ Principle: 4 basic operations executed iteratively:

- Selection: selection of parents which are allowed to mate; high-quality individuals are allowed to produce more offsprings.
- **Crossover:** offsprings are created such that the parents exchange some of their parts.
- **Mutation:** some parts of offsprings are changed randomly.
- Replacement: offsprings and parents compete for their place in population; higher-quality individuals have higher chance to survive.

Demo: Marek Obitko http://obitko.com/tutorials/genetic-algorithms/

Summary

- Artificial life studies the laws and phenomena taking place in real living systems.
- The basic research tool is simulation.
- Goals:
 - Understand the effects of simple rules in complex systems.
 - Take advantage of these (maybe modified) principles to solve practical tasks.

- What is artificial life?
- Celular automata
- Ant colonies
- Particle Swarm
- Evolutionary (genetic) algorithms
- Conclusions
- Summary

What is artificial life?

Evolutionary (genetic)

Celular automata

Ant colonies

algorithms

Conclusions • Summary

Particle Swarm

Summary

- Artificial life studies the laws and phenomena taking place in real living systems.
- The basic research tool is simulation.
- Goals:
 - Understand the effects of simple rules in complex systems.
 - Take advantage of these (maybe modified) principles to solve practical tasks.

Do you want to learn more?

- A4M33BIA: Biologically inspired algorithms http://www.feld.cvut.cz/education/bk/predmety/12/58/p12584904.html
 - Intro to neural networks and evolutionary algorithms.
 - Focus on breadth (what can be achieved using these algorithms), rather then depth (how exactly it is done).
- A0M33EOA: Evolutionary optimization algorithms http://www.feld.cvut.cz/education/bk/predmety/12/58/p12589004.html
 - More specialized, focus on depth.
- A4M33MAS: Multi-agent systems http://www.feld.cvut.cz/education/bk/predmety/12/58/p12585904.html
 - Agent technologies in depth.