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Boosting
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Ensembles, committees

Ensemble is a committee of several different models; their predictions are aggregated e.g.
by voting or weighting.
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Individual ensamble methods differ in the way they create individual models different from
each other.
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Boosting

Hypothesis Boosting Problem

m [f there exists an efficient algorithm able to create weak classifiers (i.e. classifiers only
Boosting slightly better than random guessing), does it also mean that there is an efficient
@ Psembles, algorithm able to build strong classifiers (i.e. classifiers with an arbitrary precision)?

committees

e Boosting

e AdaBoost
e AdaBoost
graphically

* AdaBoostremarks —m construct the final strong classifier as a weighted sum of the weak classifiers,

Boosting algorithms

m iteratively learn weak classifiers using weighted training set,

m assign the weights to individual weak learners depending on their accuracy,
m re-weight the training data for another round of the weak learner,

m differ in the way how they weight the training data and/or the individual weak
classifiers.

AdaBoost
m Training data:

m Ineachiterationt =1,..., T, it uses different weights D; (i) of the training
examples x;.

m Incorrectly classified examples get a larger weight for the next iteration.

m  The resulting classifier:

m  Weighted voting.
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AdaBoost

Algorithm 1: AdaBoost

Input: Training set of labeled examples: {x;,v;},x; € RP,y; € {+1,-1},i=1,...,m

Boosting
e Ensembles, Output: Final classifier Hgp, (x) = sign (Zle octht(x))
committees
e Boosting 1 begin
e AdaBoost 2 Initialize the weights of training examples: Dy (i) = 1.
* AdaBoost 3 fort=1,...,Tdo
graphically . .
Ad . 4 Train a weak classifier h;.
e AdaBoost: remarks .
5 Compute the weighted error:
m
e =) Di(i)I (yi # hi(x:))
i=1
6 Compute the weight of classifier h;:
1 1—
af:—m( €’f>>0
2 €t
7 Update the weights of the training examples:
o _ Di(i) e, ify; = h(xi),
Dt+1(l) = Z, X { et if y; A ht(xi);
Dy (i
= tZ( ) x exp (—ayihe(xi)),
t
| where Z; is a normalization factor.
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AdaBoost graphically

Iteration 1:

Iter 1: Last hypothesis
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AdaBoost graphically

Iteration 1:

Iter 1: Last hypothesis

Iteration 2;

Iter 2: Last hypothesis
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AdaBoost graphically

Iteration 1:

Iter 1: Last hypothesis

Iteration 2;
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AdaBoost graphically

Iteration 1: Iteration 2; [teration 3:
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AdaBoost: remarks

The training error:

m Let; = 0.5 — ¢ be the improvement of the t-th model over a random guess.

Boosting

eT— m Let v = min; 9; be the minimal improvement, i.e. the difference of error of all models
committees h(t) compared to the error of random guessing is at least v, i.e.

e Boosting

e AdaBoost .
e AdaBoost Vit : It Z Y > 0.

graphically
e AdaBoost: remarks

m [t can be shown that the training error

Errq, (Hfinal ) <e i

P. Posik (© 2015 Artificial Intelligence -7 / 7



	Boosting
	Ensembles, committees
	Boosting
	AdaBoost
	AdaBoost graphically
	AdaBoost: remarks




