# Boosting. Adaboost.

## Petr Pošík

| osting                | 2 |
|-----------------------|---|
| Ensembles, committees | 3 |
| Boosting              | 4 |
| AdaBoost              | 5 |
| AdaBoost graphically. | 6 |
| AdaBoost: remarks     | 7 |

Boosting 2 / 7

#### Ensembles, committees

Ensemble is a committee of several different models; their predictions are aggregated e.g. by voting or weighting.



Individual ensamble methods differ in the way they create individual models different from each other.

P. Pošík © 2014

Artificial Intelligence - 3 / 7

### Boosting

#### **Hypothesis Boosting Problem**

■ If there exists an efficient algorithm able to create *weak classifiers* (i.e. classifiers only slightly better than random guessing), does it also mean that there is an efficient algorithm able to build *strong classifiers* (i.e. classifiers with an arbitrary precision)?

#### Boosting algorithms

- iteratively learn weak classifiers using weighted training set,
- construct the final strong classifier as a weighted sum of the weak classifiers,
- assign the weights to individual weak learners depending on their accuracy,
- re-weight the training data for another round of the weak learner,
- differ in the way how they weight the training data and/or the individual weak classifiers.

## AdaBoost

- Training data:
  - In each iteration t = 1, ..., T, it uses different weights  $D_t(i)$  of the training examples  $x_i$ .
  - Incorrectly classified examples get a larger weight for the next iteration.
- The resulting classifier:
  - Weighted voting.

P. Pošík © 2014

Artificial Intelligence – 4 / 7

## AdaBoost

#### Algorithm 1: AdaBoost

```
Input: Training set of labeled examples: \{x_i, y_i\}, x_i \in \mathcal{R}^D, y_i \in \{+1, -1\}, i = 1, ..., m

Output: Final classifier H_{\text{final}}(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)
```

begin

Initialize the weights of training examples:  $D_1(i) = \frac{1}{m}$ .

for t = 1, ..., T do

| Train a weak classifier  $h_t$ .

Compute the weighted error:

$$\epsilon_t = \sum_{i=1}^m D_t(i) I (y_i \neq h_t(\mathbf{x}_i))$$

Compute the weight of classifier  $h_t$ :

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

Update the weights of the training examples:

$$\begin{split} D_{t+1}(i) &= \frac{D_t(i)}{Z_t} \times \left\{ \begin{array}{l} e^{-\alpha_t}, & \text{if } y_i = h_t(x_i), \\ e^{\alpha_t}, & \text{if } y_i \neq h_t(x_i), \end{array} \right. \\ &= \frac{D_t(i)}{Z_t} \times \exp\left(-\alpha_t y_i h_t(x_i)\right), \end{split}$$

where  $Z_t$  is a normalization factor.

P. Pošík © 2014 Artificial Intelligence – 5 / 7



P. Pošík © 2014 Artificial Intelligence – 6 / 7

## AdaBoost: remarks

The training error:

- Let  $\gamma_t = 0.5 \epsilon_t$  be the improvement of the *t*-th model over a random guess.
- Let  $\gamma = \min_t \gamma_t$  be the minimal improvement, i.e. the difference of error of all models h(t) compared to the error of random guessing is at least  $\gamma$ , i.e.

$$\forall t: \gamma_t \geq \gamma > 0.$$

■ It can be shown that the training error

$$\operatorname{Err}_{\operatorname{Tr}}(H_{\operatorname{final}}) \leq e^{-2\gamma^2 T}$$

P. Pošík © 2014

Artificial Intelligence – 7 / 7