A(E)3M33UI - Exercise11:

Markov Decision Processes

Martin Macaš
2015

Figure 17.1 (a) A simple 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the "intended" outcome occurs with probability 0.8 , but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. The two terminal states have reward +1 and -1 , respectively, and all other states have a reward of -0.04 .

Exercise $\mathbf{1}$ For the $4 \times \mathbf{3}$ world shown in figure, calculate which squares can be reached from $(1,1)$ by the action sequence [$U p, U p$, Right] and with what probabilities.

Exercise $\mathbf{2}$ Consider an undiscounted MDP having three states $1,2,3$ with rewards $-1,-2,0$, respectively. State 3 is a terminal state. In states 1 and 2 there are two possible actions: a and b. The transition model is as follows:

- In state 1 , action a moves the agent to state 2 with probability 0.8 and makes the agent stay put with probability 0.2 .
- In state 2 , action a moves the agent to state 1 with probability 0.8 and makes the agent stay put with probability 0.2 .
- In either state 1 or state 2 , action b moves the agent to state 3 with probability 0.1 and makes the agent stay put with probability 0.9 .

Questions:

a. What can be determined qualitatively about the optimal policy in states 1 and 2?
b. Apply three steps of value iteration, showing each step in full.
c. Which action will you chose for state 2 after the third iteration and why?

