
A(E)3M33UI — Exercise D:
Basis expansion for linear and logistic regression

Petr Pošík

March 10, 2015

The goal of this exercise is to show

• how to make linear models non-linear using basis expansion,

• how to build a simple custom operator in scikit-learn,

• how to construct pipelines in scikit-learn,

• to demonstrate how more flexible models achieve lower error rates on the train-
ing data, and

• to show that different predictive models (in this case linear regression, logistic
regression, and support vector machine) have the same interface in scikit-learn.

The program code for this exercise is organized in several Python modules:

• exD-1.py, which contains the main script for the first part of the exercise dealing
with regression models,

• exD-2.py, containing the main script for the second part of the exercise dealing
with classification models,

• mpg.py, which contains the helper functions for loading the data,

• plotting.py, which contains helper functions for graphical display of the data
and models,

• mapping.py, which contains functions for basis expansion,

• model_evaluation.py, which contains functions for computing model errors.

After completion, zip all the above files and hand in the archive via the Upload system.
If you will not manage to complete the exercise in the lab, finish it as a homework!

1



1 Non-linear regression models using linear regression
and basis expansion

As in the previous exercise, we shall work with the auto-mpg.csv dataset, and study the
relation of horse power and displacement, i.e. you shall build the model ĥp = h(disp).

Run the exD-1.py script. It shall plot the data and end up in an error.

Task 1: In module plotting.py, fill in the missing code in plot_1D_regr_model(), so
that the example script will show the predictions of the model given as a parameter.

Hints: Assume that the model argument is a sklearn predictive model, i.e. that it has
a predict() method. There is nothing new in this task, you have done this already in
the last exercise.

Now, you shall see the predictions of the linear model in the figure. We shall now
compute the error of this model, as measured by the mean squared error on the training
data.

Task 2: In model_evaluation.py, fill in the function compute_model_error(model,X,y,err_func),
which takes a trained model, the training data X,y, and the error function err_func, and
produces the error of the model.

Hints:

• Look at the function compute_err_MSE() in model_evaluation.py. You should be
familiar with it, we implemented it last week.

• Your task is to make the function compute_model_error universal in such a way
that it can compute the error of any predictive model, as long as a suitable err_func
is provided by the user.

• In exD-1.py, we supply the compute_err_MSE function to the compute_model_error
as the error function (err_func) argument. Later in this exercise, we will provide
a different error function for classification models.

1.1 Basis expansion: polynomials

In this part of the exercise, we shall implement the basis expansion as a transformation
usable in the scikit-learn pipeline, i.e. it must implement the relevant APIs. Namely,
it must implement methods fit() and transform().

In this section, we would like to implement a simple polynomial mapping, which
would transform the data points from the feature space X to an image space containing
X, X2, . . . , Xmax_deg, where the max_deg is the maximal degree of the polynom.

Task 3: In mapping.py, implement the class PolynomialMapping:

• In case of transformations, the fit() method is used to train the transformation in
an unsupervised way (i.e. it may be useful e.g. for PCA, ICA, k-means clustering,
etc.). In our case, the transformation is fixed and does not depend on the data;
the fit method shall thus be empty, but shall return self, i.e. the current instance
of the PolynomialMapping class.

2

http://scikit-learn.org/stable/developers/#apis-of-scikit-learn-objects


• The transform() method shall perform the actual transformation (or mapping).
In our case, it shall take a [m × D] matrix X, and shall return a matrix of size
[m × (max_deg · D)], where the first block of D columns will be just a copy of X,
the second block shall be X2 (meaning a matrix of squares of items), etc.

Hints:

• You should be already able to concatenate Numpy arrays using numpy.hstack().

• You can test your solution in Python shell. By issuing the commands:

>>> pm = PolynomialMapping(2)
>>> pm.transform(X)

you should get a matrix with 2 columns, where the values in the second one are
squares of the values in the first one.

Now, you shall learn something about scikit-learn pipelines. They allow us to
chain a series of preprocessing steps (transformations) with a final predictive model,
making the whole sequence effectively a single larger model, which can be used as
a whole. In our case, we would like to build a pipeline of PolynomialMapping and
LinearRegression.

Task 4: In exD-1.py, fill in the missing code to

1. create an instance of PolynomialMapping class with degree 2,

2. create an instance of a pipe containing the polynomial mapping and the linear
regresion model (which alredy exists in the workspace),

3. fit the pipe to the training data,

4. plot the pipe predictions in the graph, and

5. compute the error of the pipe (quadratic model).

Once the above part is finished, it shouldn’t be hard to embed it in a for-loop, so that
we will see a nice comparison of the linear, quadratic, cubic and quartic polynomial
models.

1.2 Comparison of polynomial models with increasing degree

Task 5: In exD-1.py, fill in the missing code inside the for-loop, which shall for degrees
from 1 to 4 create a pipeline containing the PolynomialMapping instance with the respec-
tive degree and the linear regression model, fit the model, plot the model predictions
in the graph and compute the error for each of the model.

If successfully finished, you should see that with increasing flexibility of the model
(increasing degree), the error of the model measured on the training data gets smaller.
This is a general phenomenon and we shall study this in the next lectures.

3

http://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html


2 Non-linear classification models using logistic regres-
sion and basis expansion

We shall now turn our attention to the script exD-2.py. Run it, it will end up with an
error, but you should at least see the data points with color indicating their class.

Task 6: In exD-2.py, fill in the code that would fit a logistic regression model to the
data.

Hints:

• Take inspiration in exD-1.py from the case with linear regresion.

• You should just create an instance of linear_model.LogisticRegression and fit it
to the data.

The script shall then continue by graphically showing the predictions and decision
boundary of the trained model.

Task 7: In model_evaluation.py, implement the function compute_err_01, which shall
return the average number of incorrect predictions.

After completion of the above task, the script shall be able to compute the error rate
of the logistic regression model, and shall display it in the title of the figure.

2.1 Basis expansion: Pure polynomials

Task 8: In exD-2.py, fill in the code that shall build a pipe containing an instance of
PolynomialMapping with certain degree and an instance of linear_model.LogisticRegression,
fit the pipe to the data, plot the classification of the model using plot_2D_class_model,
and compute the error rate of the model.

Hints:

• Again, take inspiration in exD-1.py from the case with linear regresion.

• All the building blocks are already present in the exD-2.py in the case for logistic
regression.

• Experiment a bit with the degree of the model.

Now, you shall see another figure showing the predictions of logistic regression
with non-linear decision boundary. The error rate printed in the figure title shall be a
bit lower than in case of the linear prediction, although the decision boundaries do not
differ much (compared by human eyes).

2.2 Basis expansion: Full polynomial mapping

Task 9: In mapping.py, implement the class FullPolynomialMapping. The PolynomialMapping
class produces only pure polynomials like X2

1, X2
2, X3

1, X3
2, etc. It does not produce the

crossproduct terms X1X2, X2
1X2, X1X2

2, etc. which shall be part of the FullPolynomialMapping.

4



The class shall be general in the respect that it can handle matrix X with any number of
columns and it shall work for any given maximal degree max_deg.

Hints:

• This task is a bit more involved. You may start by expecting that the matrix X
contains 2 columns only (x and y coordinates), and you want to construct a full
quadratic mapping only, i.e. include terms X1, X2, X2

1, X1X2, and X2
2.

• If you want to implement the class in a general way (as required), you may use
the function itertools.combinations_with_replacement. An example of its us-
age:

>>> from itertools import combinations_with_replacement
>>> list(combinations_with_replacement([0,1,2], 1))
[(0,), (1,), (2,)]
>>> list(combinations_with_replacement([0,1,2], 2))
[(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)]
>>> list(combinations_with_replacement([0,1,2], 3))
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2),
(0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)]

Do you see how the results can be used to generate

– the linear terms X1, X2, X3,

– the quadratic terms X2
1, X1X2, X1X3, X2

2, X2X3, X2
3,

– the cubic terms X3
1, X2

1X2, X2
1X3, X1X2

2, X1X2X3, X1X2
3, X3

2, X2
2X3, X2X2

3, X3
3?

Task 10: In exD-2.py, fill in the code that would build a pipe containing an instance
of FullPolynomialMapping with certain degree and an instance of LogisticRegression,
fit the pipe to the data, plot the classification of the model using plot_2D_class_model,
and compute the error rate of the model.

Hints:

• Experiment a bit with the degree of the model and observe the results.

2.3 SVM: Linear kernel

We shall now try to solve the same task by a support vector machine. For this task,
we shall use the sklearn.svm.SVC class. This can be used to create a support vector
classifier with various kinds of kernels.

Task 11: In exD-2.py, fill in the code that shall instantiate a sklearn.svm.SVC model
with linear kernel, fit it to the data, plot the classification of the model using plot_2D_class_model,
and compute the error rate of the model.

Hints:

• The default kernel used by the SVC model is the RBF kernel. If we want to use
a linear kernel (to train the optimal separating hyperplane with soft margin), we
have to specify kernel='linear' when constructing the model instance like this:

5

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


model = sklearn.svm.SVC(kernel='linear')

• Observe the difference between the linear model trained by the logistic regression
and the linear model trained by the SVM algorithm.

2.4 SVM: RBF kernel

Task 12: In exD-2.py, fill in the code that shall instantiate a sklearn.svm.SVC model
with RBF kernel, fit it to the data, plot the classification of the model using plot_2D_class_model,
and compute the error rate of the model.

Hints:

• The RBF kernel is the default one when constructing the instance of SVC class, you
do not need to specify it explicitly (but you can).

• If you do not see anything interesting in the figure, try to zoom in to see the
neighborhood of the data points in more detail.

• Try to set the gamma parameter of the SVC model to a value different from the
default one, e.g.

>>> model = sklearn.svm.SVC(gamma=0.005)

It is the parameter of the RBF kernel and this setting changes the widths of the
RBF functions.

• Experiment a bit with the gamma value.

3 Summary

We have seen several easy ways how to use algorithms for fitting linear models to
create non-linear ones, both in the regresssion and classification setting. We have also
build a custom transformation operator able to work in a pipeline with a predictive
model. It was demonstrated that the error of a model measured on the training data
usually gets smaller with increasing flexibility of the model. And we have also seen
the support vector machine in action. But, we still have no idea which of the models seen
today shall be better for prediction!

Finish the exercise as a homework, ask questions on the forum, and upload the
solution via Upload system!

6


	Non-linear regression models using linear regression and basis expansion
	Basis expansion: polynomials
	Comparison of polynomial models with increasing degree

	Non-linear classification models using logistic regression and basis expansion
	Basis expansion: Pure polynomials
	Basis expansion: Full polynomial mapping
	SVM: Linear kernel
	SVM: RBF kernel

	Summary

