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Localization in a team of robots

Localization in a team of robots

Every robot localizes independently
Maximum likelihood estimation
Particle filter

Extended Kalman filter

We talk about localization, i.e. a map of the environment is
known in advance

SLAM approaches for multi-robot teams exist, but these are
out of scope of the course
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Maximum likelihood estimation
Howard, Matari¢, Sukhatme (2002)
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Input:
e The set of measurements: O = {0}, where
o= (u, X, ra,ta, rp, tp), it is the measured robot position r, at
time tp, relatively to the robot t, at time t,.
e Odometry: 0 = (i, X, ra, ta, fa, tp)
e Measurement: o = (u, X, ra, ta, ra, tp)
Output:
e The set of positions estimates: H = {h}, where h = (§,r, t),
g is estimate of robot's position r at time t.
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Maximum likelihood estimation
e We want to determine a set of positions H, which maximizes
probability of a measurement set O, i.e. maximizes P(O|H).
e Assume the measurements are independent:
P(O[H) = ] P(olH)
oc0
o After performing log minimization:

H) =) U(olH),

ocO
where U(O|H) = —log P(O|H) and U(o|H) = — log P(o|H)

e Assume normal distribution for measurement uncertainty:
1 T .
UlolH) = 5(n =) Z(n — 1)

e Motion model: i = I'(4a, 45)

e Optimization by a standard numerical techniques (gradient descent,
steepest descent)
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Maximum likelihood estimation

Practical notes

e Dimensionality of the problem increases linearly with H and
every step of the optimization process increases linearly with
0.

e To decrease complexity we apply:

e Filtering of old measurements.
e Filtering of similar measurements.
e Limiting of the rate at which pose estimates are generated.
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Particle filter

e Extension of a standard particle filter.
e Integration of detection - one robot ,sees" the other one.

e Naive approach: state space incorporates positions of all

robots:

xe=xt x x2 ... xN

e Dimensionality increases linearly with the number of robots
and the number of particles x; exponentially.

e Factorization:
P x¢, - 1dD) = p(1[dD) - p(xFdD) ... p(x|d M)

e Every robot keeps only its own position and only if the robot
detect another one, information is exchanged.

e |t is approximation only, positions of robots are not
independent!
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Particle filter

e Assume the following data:
e Odometry - motion integration

Bel(x])) = / p(x0 X0y, uf)Bel(x{ 1)
[ ] Sensor measurement
Bel(x?) = plz|xf) Bel(x!)

e Detection of other robots
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Particle filter

Derivation of equations for detection

e The robot R, detects another robot R, by measuring r[".

Bel(x/) = p(x/ld()
= px¢ld_1))p(xc'1d:")

p(xC1dt_1) / P, )P )

e Which leads to:
Bel(x;') = Bel(x{_1) / pOx [x{", ri") Bel (x{") dx;"

e Update of m-th robot's position is done symmetrically.



Localization in a team of robots

Particle filter

Implementation

e Extension of the particle filter for multiple robots is not
straightforward — how to multiply two sets of particles?

Bel(x2) = Bel(x?_1) [ p(xtIx. ") Bel(") o

o |dea: transform a set of particles for m into a density tree:
e Recursive space division using piece-wise constant density

functions.
o Node (leaf) density is a sum of weights of particles divided by

a volume of the node.
e Weight of a particle R, is multiplied by corresponding density.
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Particle filter

Problems

e Frequency of detection is high ~~ a single detection is
integrated many times.

e |dentification of robots is needed.

e False-positive detection - robots ,,see” each other with
relatively low frequency ~~ small amount of false-positive
plays a big role.

e Positive information only - negative information can be
incorporated in general, but it is computationally demanding.

e Delayed integration - in case of high uncertainty of pose

determination. It is necessary to keep information about all
actions and measurements.
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Extended Kalman filter

e Configuration of i-th robot X; = (x;, yi, ;)

e \We aim to estimate the state
X = (X1, X2, ..., Xn)

e Covariance matrix:
Z — 221 222 PP Z2N
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Extended Kalman filter

e Detection (i-th robot ,sees” j-th)

e Jacobian H:

e and
HEHT + Q@
2
b

z=h(X;, X;))+w

H=(0,...,0,H;0,...,0,H;,0,...,0),

HiZiH] + HXzHT + HEHT + HEHT + Q= P,
Wy + (Z/,'HIT + zlejT)Pz_zl(Z - h(,u,-, N’j))
i — (ZiHT + SH )P (HiSi + HiSyr)
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Extended Kalman filter
e Distance:
ha(Xi, Vi) = VD2 + Ay?
pd ( —Ax —Ay 0)
’ VAX2 + Ay?  \/AX2 + Ay?’

bl _ Ax Ay 0
/ NINCEN ARV N
e Relative direction:

—sin0;Ax + cos0;Ay
hp(Xi, Yi) = t .
ol ) arctan ( cos0jAx +sin0;Ay )

b Ay —Ax
Hi = ) 7_1
Ax? + Ay?’ Ax?2 + Ay?
T —Ay Ax 0
I \Ax2+ Ay2’ Ax2 + Ay?’
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Extended Kalman filter

e Relative orientation:
ho(Xi, Yi) = 0;—0;
H? = (0,0,-1)

H = (0,0,1)

Ax = Xxj—Xx
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