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Localization in a team of robots

Localization in a team of robots

• Every robot localizes independently

• Maximum likelihood estimation

• Particle filter

• Extended Kalman filter

• We talk about localization, i.e. a map of the environment is
known in advance

• SLAM approaches for multi-robot teams exist, but these are
out of scope of the course
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Maximum likelihood estimation
Howard, Matarić, Sukhatme (2002)

Input:
• The set of measurements: O = {o}, where
o = (µ,Σ, ra, ta, rb, tb), µ is the measured robot position rb at
time tb relatively to the robot ta at time ta.

• Odometry: o = (µ,Σ, ra, ta, ra, tb)
• Measurement: o = (µ,Σ, ra, ta, ra, tb)

Output:

• The set of positions estimates: H = {h}, where h = (q̂, r , t),
q̂ is estimate of robot’s position r at time t.
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Maximum likelihood estimation

• We want to determine a set of positions H, which maximizes
probability of a measurement set O, i.e. maximizes P(O|H).

• Assume the measurements are independent:

P(O|H) =
∏
o∈O

P(o|H)

• After performing log minimization:

U(O|H) =
∑
o∈O

U(o|H),

where U(O|H) = − logP(O|H) and U(o|H) = − logP(o|H)

• Assume normal distribution for measurement uncertainty:

U(o|H) =
1

2
(µ− µ̂)TΣ(µ− µ̂)

• Motion model: µ̂ = Γ(q̂a, q̂b)

• Optimization by a standard numerical techniques (gradient descent,
steepest descent)
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Maximum likelihood estimation
Practical notes

• Dimensionality of the problem increases linearly with H and
every step of the optimization process increases linearly with
O.

• To decrease complexity we apply:
• Filtering of old measurements.
• Filtering of similar measurements.
• Limiting of the rate at which pose estimates are generated.
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Particle filter

• Extension of a standard particle filter.

• Integration of detection - one robot
”
sees“ the other one.

• Naive approach: state space incorporates positions of all
robots:

xt = x1t × x2t . . . x
N
t

• Dimensionality increases linearly with the number of robots
and the number of particles xt exponentially.

• Factorization:

p(x1t , x
2
t , . . . , x

N
t |d (t)) = p(x1t |d (t)) ·p(x2t |d (t)) · . . . ·p(xNt |d (t))

• Every robot keeps only its own position and only if the robot
detect another one, information is exchanged.

• It is approximation only, positions of robots are not
independent!
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Particle filter

• Assume the following data:
• Odometry - motion integration

Bel(xnt ) =

∫
p(xnt |xnt−1, unt )Bel(xnt−1)

• Sensor measurement

Bel(xnt ) = p(z |xnt )Bel(xnt )

• Detection of other robots
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Particle filter
Derivation of equations for detection

• The robot Rn detects another robot Rm by measuring rmt .

Bel(xnt ) = p(xnt |dn
(t))

= p(xnt |dn
(t−1))p(xnt |dm

t )

= p(xnt |dn
(t−1))

∫
p(xnt |xmt , rmt )p(xmt |dm

(t−1))

• Which leads to:

Bel(xnt ) = Bel(xnt−1)

∫
p(xnt |xmt , rmt )Bel(xmt )dxmt

• Update of m-th robot’s position is done symmetrically.
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Particle filter
Implementation

• Extension of the particle filter for multiple robots is not
straightforward – how to multiply two sets of particles?

Bel(xnt ) = Bel(xnt−1)

∫
p(xnt |xmt , rmt )Bel(xmt )dxmt

• Idea: transform a set of particles for m into a density tree:
• Recursive space division using piece-wise constant density

functions.
• Node (leaf) density is a sum of weights of particles divided by

a volume of the node.
• Weight of a particle Rn is multiplied by corresponding density.
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Particle filter
Problems

• Frequency of detection is high  a single detection is
integrated many times.

• Identification of robots is needed.

• False-positive detection - robots
”
see“ each other with

relatively low frequency  small amount of false-positive
plays a big role.

• Positive information only - negative information can be
incorporated in general, but it is computationally demanding.

• Delayed integration - in case of high uncertainty of pose
determination. It is necessary to keep information about all
actions and measurements.
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Extended Kalman filter

• Configuration of i-th robot Xi = (xi , yi , θi )

• We aim to estimate the state

X = (X1,X2, . . . ,XN)

• Covariance matrix:

Σ =


Σ11 Σ12 . . . Σ1N

Σ21 Σ22 . . . Σ2N

. . . . . . . . . . . .
ΣN1 ΣN2 . . . ΣNN


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Extended Kalman filter

Correction (measurement integration)
K = ΣHT (HΣHT + Q)−1

µ = µ+ K (z − h(µ))
Σ = (E − KH)Σ

• Detection (i-th robot
”
sees“ j-th)

z = h(Xi ,Xj) + w

• Jacobian H:

H = (0, . . . , 0,Hi , 0, . . . , 0,Hj , 0, . . . , 0),

• and

HΣHT + Q = HiΣiiH
T
i + HiΣijH

T
j + HjΣjiH

T
i + HjΣjjH

T
j + Q = Pzz

µl = µl + (ΣliH
T
i + ΣljH

T
j )P−1zz (z − h(µi , µj))

Σlf = Σlf − (ΣliH
T
i + ΣljH

T
j )P−1zz (HiΣif + HjΣjf )
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Extended Kalman filter

• Distance:

hd(Xi ,Yi ) =
√

∆x2 + ∆y2

Hd
i =

(
−∆x√

∆x2 + ∆y2
,

−∆y√
∆x2 + ∆y2

, 0

)

Hd
j =

(
∆x√

∆x2 + ∆y2
,

∆y√
∆x2 + ∆y2

, 0

)
• Relative direction:

hb(Xi ,Yi ) = arctan

(
− sin θi∆x + cos θi∆y

cos θi∆x + sin θi∆y

)
Hb
i =

(
∆y

∆x2 + ∆y2
,
−∆x

∆x2 + ∆y2
,−1

)
Hb
j =

(
−∆y

∆x2 + ∆y2
,

∆x

∆x2 + ∆y2
, 0

)
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Extended Kalman filter

• Relative orientation:

ho(Xi ,Yi ) = θj − θi
Ho
i = (0, 0,−1)

Ho
j = (0, 0, 1)

∆x = xj − xi

∆y = yj − yi
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