Multi-robot localization

Miroslav Kulich

Intelligent and Mobile Robotics Group
Czech Institute of Informatics, Robotics and Cybernetics
Czech Technical University in Prague

Wednesday 9/11/2016

Localization in a team of robots

- Every robot localizes independently
- Maximum likelihood estimation
- Particle filter
- Extended Kalman filter
- We talk about localization, i.e. a map of the environment is known in advance
- SLAM approaches for multi-robot teams exist, but these are out of scope of the course

Maximum likelihood estimation

Howard, Matarić, Sukhatme (2002)

Input:

- The set of measurements: $O=\{o\}$, where $o=\left(\mu, \Sigma, r_{a}, t_{a}, r_{b}, t_{b}\right), \mu$ is the measured robot position r_{b} at time t_{b} relatively to the robot t_{a} at time t_{a}.
- Odometry: $o=\left(\mu, \Sigma, r_{a}, t_{a}, r_{a}, t_{b}\right)$
- Measurement: $o=\left(\mu, \Sigma, r_{a}, t_{a}, r_{a}, t_{b}\right)$

Output:

- The set of positions estimates: $H=\{h\}$, where $h=(\hat{q}, r, t)$, \hat{q} is estimate of robot's position r at time t.

Maximum likelihood estimation

- We want to determine a set of positions H, which maximizes probability of a measurement set O, i.e. maximizes $P(O \mid H)$.
- Assume the measurements are independent:

$$
P(O \mid H)=\prod_{o \in O} P(o \mid H)
$$

- After performing log minimization:

$$
U(O \mid H)=\sum_{o \in O} U(o \mid H)
$$

where $U(O \mid H)=-\log P(O \mid H)$ and $U(o \mid H)=-\log P(o \mid H)$

- Assume normal distribution for measurement uncertainty:

$$
U(o \mid H)=\frac{1}{2}(\mu-\hat{\mu})^{T} \Sigma(\mu-\hat{\mu})
$$

- Motion model: $\hat{\mu}=\Gamma\left(\hat{q}_{a}, \hat{q}_{b}\right)$
- Optimization by a standard numerical techniques (gradient descent, steepest descent)

Maximum likelihood estimation

Practical notes

- Dimensionality of the problem increases linearly with H and every step of the optimization process increases linearly with O.
- To decrease complexity we apply:
- Filtering of old measurements.
- Filtering of similar measurements.
- Limiting of the rate at which pose estimates are generated.

Particle filter

- Extension of a standard particle filter.
- Integration of detection - one robot „sees" the other one.
- Naive approach: state space incorporates positions of all robots:

$$
x_{t}=x_{t}^{1} \times x_{t}^{2} \ldots x_{t}^{N}
$$

- Dimensionality increases linearly with the number of robots and the number of particles x_{t} exponentially.
- Factorization:

$$
p\left(x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{N} \mid d^{(t)}\right)=p\left(x_{t}^{1} \mid d^{(t)}\right) \cdot p\left(x_{t}^{2} \mid d^{(t)}\right) \cdot \ldots \cdot p\left(x_{t}^{N} \mid d^{(t)}\right)
$$

- Every robot keeps only its own position and only if the robot detect another one, information is exchanged.
- It is approximation only, positions of robots are not independent!

Particle filter

- Assume the following data:
- Odometry - motion integration

$$
\operatorname{Be} l\left(x_{t}^{n}\right)=\int p\left(x_{t}^{n} \mid x_{t-1}^{n}, u_{t}^{n}\right) \operatorname{Be} l\left(x_{t-1}^{n}\right)
$$

- Sensor measurement

$$
\operatorname{Bel}\left(x_{t}^{n}\right)=p\left(z \mid x_{t}^{n}\right) \operatorname{Bel}\left(x_{t}^{n}\right)
$$

- Detection of other robots

Particle filter

Derivation of equations for detection

- The robot R_{n} detects another robot R_{m} by measuring r_{t}^{m}.

$$
\begin{aligned}
\operatorname{Bel}\left(x_{t}^{n}\right) & =p\left(x_{t}^{n} \mid d_{(t)}^{n}\right) \\
& =p\left(x_{t}^{n} \mid d_{(t-1)}^{n}\right) p\left(x_{t}^{n} \mid d_{t}^{m}\right) \\
& =p\left(x_{t}^{n} \mid d_{(t-1)}^{n}\right) \int p\left(x_{t}^{n} \mid x_{t}^{m}, r_{t}^{m}\right) p\left(x_{t}^{m} \mid d_{(t-1)}^{m}\right)
\end{aligned}
$$

- Which leads to:

$$
\operatorname{Bel}\left(x_{t}^{n}\right)=\operatorname{Bel}\left(x_{t-1}^{n}\right) \int p\left(x_{t}^{n} \mid x_{t}^{m}, r_{t}^{m}\right) \operatorname{Bel}\left(x_{t}^{m}\right) d x_{t}^{m}
$$

- Update of m-th robot's position is done symmetrically.

Particle filter

Implementation

- Extension of the particle filter for multiple robots is not straightforward - how to multiply two sets of particles?

$$
\operatorname{Bel}\left(x_{t}^{n}\right)=\operatorname{Bel}\left(x_{t-1}^{n}\right) \int p\left(x_{t}^{n} \mid x_{t}^{m}, r_{t}^{m}\right) \operatorname{Bel}\left(x_{t}^{m}\right) d x_{t}^{m}
$$

- Idea: transform a set of particles for m into a density tree:
- Recursive space division using piece-wise constant density functions.
- Node (leaf) density is a sum of weights of particles divided by a volume of the node.
- Weight of a particle R_{n} is multiplied by corresponding density.

Particle filter

Problems

- Frequency of detection is high \rightsquigarrow a single detection is integrated many times.
- Identification of robots is needed.
- False-positive detection - robots „see" each other with relatively low frequency \rightsquigarrow small amount of false-positive plays a big role.
- Positive information only - negative information can be incorporated in general, but it is computationally demanding.
- Delayed integration - in case of high uncertainty of pose determination. It is necessary to keep information about all actions and measurements.

Extended Kalman filter

- Configuration of i-th robot $X_{i}=\left(x_{i}, y_{i}, \theta_{i}\right)$
- We aim to estimate the state

$$
X=\left(X_{1}, X_{2}, \ldots, X_{N}\right)
$$

- Covariance matrix:

$$
\Sigma=\left(\begin{array}{cccc}
\Sigma_{11} & \Sigma_{12} & \ldots & \Sigma_{1 N} \\
\Sigma_{21} & \Sigma_{22} & \ldots & \Sigma_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
\Sigma_{N 1} & \Sigma_{N 2} & \ldots & \Sigma_{N N}
\end{array}\right)
$$

Extended Kalman filter

$$
\begin{aligned}
& \text { Correction (measurement integration) } \\
& K=\Sigma H^{\top}\left(H \Sigma H^{\top}+Q\right)^{-1} \\
& \mu=\mu+K(z-h(\mu)) \\
& \Sigma=(E-K H) \Sigma
\end{aligned}
$$

- Detection (i-th robot „sees" j-th)

$$
z=h\left(X_{i}, X_{j}\right)+w
$$

- Jacobian H:

$$
H=\left(0, \ldots, 0, H_{i}, 0, \ldots, 0, H_{j}, 0, \ldots, 0\right),
$$

- and

$$
\begin{aligned}
H \Sigma H^{T}+Q & =H_{i} \Sigma_{i i} H_{i}^{T}+H_{i} \Sigma_{i j} H_{j}^{T}+H_{j} \Sigma_{j i} H_{i}^{T}+H_{j} \Sigma_{j j} H_{j}^{T}+Q=P_{z z} \\
\mu_{l} & =\mu_{l}+\left(\Sigma_{l i} H_{i}^{T}+\Sigma_{l j} H_{j}^{T}\right) P_{z z}^{-1}\left(z-h\left(\mu_{i}, \mu_{j}\right)\right) \\
\Sigma_{l f} & =\Sigma_{l f}-\left(\Sigma_{l i} H_{i}^{T}+\Sigma_{l j} H_{j}^{T}\right) P_{z z}^{-1}\left(H_{i} \Sigma_{i f}+H_{j} \Sigma_{j f}\right)
\end{aligned}
$$

Extended Kalman filter

- Distance:

$$
\begin{aligned}
h_{d}\left(X_{i}, Y_{i}\right) & =\sqrt{\Delta x^{2}+\Delta y^{2}} \\
H_{i}^{d} & =\left(\frac{-\Delta x}{\sqrt{\Delta x^{2}+\Delta y^{2}}}, \frac{-\Delta y}{\sqrt{\Delta x^{2}+\Delta y^{2}}}, 0\right) \\
H_{j}^{d} & =\left(\frac{\Delta x}{\sqrt{\Delta x^{2}+\Delta y^{2}}}, \frac{\Delta y}{\sqrt{\Delta x^{2}+\Delta y^{2}}}, 0\right)
\end{aligned}
$$

- Relative direction:

$$
\begin{aligned}
h_{b}\left(X_{i}, Y_{i}\right) & =\arctan \left(\frac{-\sin \theta_{i} \Delta x+\cos \theta_{i} \Delta y}{\cos \theta_{i} \Delta x+\sin \theta_{i} \Delta y}\right) \\
H_{i}^{b} & =\left(\frac{\Delta y}{\Delta x^{2}+\Delta y^{2}}, \frac{-\Delta x}{\Delta x^{2}+\Delta y^{2}},-1\right) \\
H_{j}^{b} & =\left(\frac{-\Delta y}{\Delta x^{2}+\Delta y^{2}}, \frac{\Delta x}{\Delta x^{2}+\Delta y^{2}}, 0\right)
\end{aligned}
$$

Extended Kalman filter

- Relative orientation:

$$
\begin{aligned}
h_{o}\left(X_{i}, Y_{i}\right) & =\theta_{j}-\theta_{i} \\
H_{i}^{\circ} & =(0,0,-1) \\
H_{j}^{\circ} & =(0,0,1)
\end{aligned}
$$

$$
\begin{aligned}
\Delta x & =x_{j}-x_{i} \\
\Delta y & =y_{j}-y_{i}
\end{aligned}
$$

