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Gentle introduction to probability theory

• Idea: explicit representation of uncertainty using calculus of
the probability theory

• p(X=x) probability that the random variable X is x

• 0 ≤ p(x) ≤ 1

• p(true) = 1, p(false) = 0

• p(A ∨ B) = p(A) + p(B)− p(A ∧ B)
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Discrete and continuous random variable

• Discrete: X is countable, i.e.
X = x1, x2, . . . , xn

• Continuous: X can have an
uncountable number of values (from
some interval)

• p is probability density

• Various distributions

• Most known: Normal (Gaussian)

• p(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2
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Multi-dimensional normal distribution

p(x = x1, . . . , xk) =
1√

(2π)k |Σ|
e−

1
2

(x−µ)T Σ−1(x−µ),

• Eigenvalues and eigenvectors of the covariance matrix define
an ellipse.
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Joint and conditional probability distribution

• p(X = x a Y = y) = p(x , y)

• If X and Y are independent then

p(x , y) = p(x)p(y)

• p(x |y) is probability x given y

p(x |y) =
p(x , y)

p(y)

p(x , y) = p(x |y)p(y)

• If X a Y are independent then

p(x |y) = p(x)
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Total probability theorem

Discrete case∑
x

p(x) = 1

p(x) =
∑
y

p(x , y)

p(x) =
∑
y

p(x |y)p(y)

Continuous space∫
x
p(x)dx = 1

p(x) =

∫
y
p(x , y)dy

p(x) =

∫
y
p(x |y)p(y)dy
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Bayes’ theorem

p(x , y) = p(x |y)p(y) = p(y |x)p(x)

⇒

p(x |y) =
p(y |x)p(x)

p(y)
=

likelihood · prior
evidence

p(x |y) =
p(y |x)p(x)

p(y)
= ηp(y |x)p(x)

η = p(y)−1 =
1∑

x p(y |x)p(x)
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Simple example of state estimation

• Assume a robot obtains measurement z

• What is p(open|z)?

• p(open|z) is diagnostic

• p(z |open) is causal

• Often causal knowledge is easier to obtain (counting
frequencies)

• Bayes rule allows us to use causal:

p(open|z) =
p(z |open)p(open)

p(z)
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Example - open doors

• p(z |open) = 0.6 p(z |¬open) = 0.3

• p(open) = p(¬) = 0.5

p(open|z) =
p(z |open)p(open)

p(z |open)p(open) + p(z |¬open)p(¬open)

p(open|z) =
0.6 · 0.5

0.6 · 0.5 + 0.3 · 0.5
=

2

3
= 0.67

• z raises probability that the door is open.



Probability Probability Bayes filter Histogram filter Particle filter Kalman filter Motion model Sensor model EKF-based localization

Example - second measurement

• p(z2|open) = 0.5 p(z2|¬open) = 0.6

• p(open|z1) = 2
3

p(open|z2z1) =
p(z2|open)p(open|z1)

p(z2|open)p(open|z1) + p(z1|¬open)p(¬open|z1)

=
1
2 ·

2
3

1
2 ·

2
3 + 3

5 ·
1
3

=
5

8
= 0.625

• z2 lowers the probability that the door is open.
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Actions

• Often the world is dynamic since
• actions carried out by the robot,
• actions carried out by other agents,
• or just the time passing by change the world (plants grow).

• Actions are never carried out with absolute certainty.

• In contrast to measurements, actions generally decrease the
uncertainty.

• To incorporate the outcome of an action u into the current
“belief”, we use the conditional pdf

p(x |u, x ′)

• This term specifies the pdf that executing u changes the state
from x ′ to x .
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Continuing the example - closing the door

p(x |u, x ′) for u = ”close door”

CLOSEDOPEN

0.9

0

10.1

p(x , u) =
∑
x ′

p(x |u, x ′)p(x ′)

If the door is open, the action ”close door”succeeds in 90% of all
cases.
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Continuing the example - closing the door

p(closed |u) =
∑
x ′

p(closed |u, x ′)p(x ′)

= p(closed |u, open)p(open)

+ p(closed |u, closed)p(closed)

=
9

10
· 5

8
+

1

1
· 3

8
=

15

16

p(open|u) =
∑
x ′

p(open|u, x ′)p(x ′)

= p(open|u, open)p(open)

+ p(open|u, closed)p(closed)

=
1

10
· 5

8
+

0

1
· 3

8
=

1

16
= 1− p(closed |u)
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Bayes filter: the framework

• Given:
• Stream of observations z and actions u:

dt = {u1, z1, . . . , ut , zt}

• Sensor model p(z |x)
• Action model p(x |u, x ′)
• Prior probability of the system state p(x)

• Wanted:
• Estimate of the state X of a dynamic system
• The posterior of the state is also called belief:

Bel(xt) = p(xt |u1, z1, . . . , ut , zt)
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Markov assumption

p(zt |x0:t , z1:t , u1:t) = p(zt |xt)
p(xt |x1:t−1, z1:t , u1:t) = p(xt |xt−1, ut)

Underlying assumptions

• Static world

• Independent noise

• Perfect model, no approximation errors
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Bayes filter - derivation

Bel(xt) = p(xt |u1, z1, . . . , ut , zt)

Bayes = ηp(zt |xt , u1, z1, . . . , ut)p(xt |u1, z1, . . . , ut)
Markov = ηp(zt |xt)p(xt |u1, z1, . . . , ut)

Total prob. = ηp(zt |xt)
∫

p(xt |u1, z1, . . . , ut , xt−1)

p(xt−1|u1, z1, . . . , ut)dxt−1

Markov = ηp(zt |xt)
∫

p(xt |ut , xt−1)p(xt−1|u1, z1, . . . , ut)dxt−1

Markov = ηp(zt |xt)
∫

p(xt |ut , xt−1)p(xt−1|u1, z1, . . . , zt−1)dxt−1

= ηp(zt |xt)
∫

p(xt |ut , xt−1)Bel(xt−1)dxt−1
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Bayes filter

Bel(xt) = ηp(zt |xt)
∫

p(xt |ut , xt−1)Bel(xt−1)dxt−1

Algorithm Bayes filter(Bel(x), d)

if d is a measurement z then
η = 0
for all x do
Bel ′(x) = p(z |x)Bel(x)
η = η + Bel ′(x)

end for
for all x do
Bel ′(x) = η−1Bel ′(x)

end for
end if

if d is a action u then
for all x do

Bel ′(x) =∫
p(x |u, x ′)Bel(x ′)dx ′

end for
end if

return Bel ′(x)



Probability Probability Bayes filter Histogram filter Particle filter Kalman filter Motion model Sensor model EKF-based localization

Bayes filters are familiar

• Kalman filters

• Histogram filters

• Particle filters

• Hidden Markov models

• Dynamic Bayesian networks

• Partially Observable Markov Decision Processes (POMDPs)
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Non-parametric filters

• Don’t rely on a fixed functional form of the posterior.

• Approximation of probability density by a finite number of
values.

• Adaptive (based on discretization), they handle nonlinearities.

• The number of samples biases the speed of the algorithm and
the quality of the filter.

• Histogram x particle filter
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Histogram filter

if d is a measurement z then
η = 0
for all x do

Bel ′(x) = p(z |x)Bel(x)
η = η + Bel ′(x)

end for
for all x do
Bel ′(x) = η−1Bel ′(x)

end for
else if d is a action u then

for all x do
Bel ′(x) =

∫
p(x |u, x ′)Bel(x ′)dx ′

end for
end if
return Bel ′(x)

Bel(xt = 〈x , y , φ〉)
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Histogram filter

• To update the belief upon sensory input and to carry out the
normalization one has to iterate over all cells of the grid =>
complexity O(n2)

• Selective update
• Only a part of state space is updated . . .
• . . . but the quality of the localization should be monitored

• Dynamic state space decomposition – kd-trees (density trees):
division grain depends on probability density (higher pdf =>
finer grain)



Probability Probability Bayes filter Histogram filter Particle filter Kalman filter Motion model Sensor model EKF-based localization

Particle filter
• Probability density represented by “appropriately” (randomly)

placed particles:

Bel(xt) ≈
{
x(i),w(i)

}
i=1,...,m

• Particles are weighted.
• Particles for time t are chosen according to the weights in

time t − 1.
• Really simple to implement.
• Most universal Bayes filter: representation of non-Gaussian

distributions and non-linear processes
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Particle filter - the algorithm

Particle filter(St−1, ut−1, zt)

St = ∅, η = 0
for i = 1, . . . , n do Generate new particles

Sample index ji from the discrete distribution given by wt−1

Sample x it z p(xt |xt−1, ut−1) using x jit−1 and ut−1

w i
t = p(zt |x it) Compute importance weight

η = η + w i
t Update normalization factor

St = St ∪
{〈

x it ,w
i
t

〉}
Insert a particle

end for
for i = 1, . . . , n do Normalize weights

w i
t = w i

t
η

end for

w1 w2

wn

w3
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Importance sampling
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Importance sampling
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Importance sampling

Video 1 Video 2
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Kalman filter
• Unimodal representation of probability density by a Gaussian

p(x) ∼ N(µ, σ2)

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

p(x) ∼ N(µ,Σ)

p(x) =
1√

(2π)k |Σ|
e−

1
2

(x−µ)T Σ−1(x−µ)
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Linear transformation

• Linear transformation preserves normal distribution.

X∼N(µ, σ2)
Y=aX + b

}
=> Y ∼ N(aµ+ b, a2σ2)

X1∼N(µ1, σ
2
1)

X2∼N(µ2, σ
2
2)

}
=> p(X1X2) ∼ N

(
σ2

2

σ2
1 + σ2

2

µ1 +
σ2

1

σ2
1 + σ2

2

µ2,
1

σ−2
1 + σ−2

2

)

X∼N(µ,Σ)
Y=AX + B

}
=> Y ∼ N(Aµ+ B,AΣAT )

X1∼N(µ1,Σ1)
X2∼N(µ2,Σ2)

}
=> p(X1X2) ∼ N

(
Σ2

Σ1 + Σ2
µ1 +

Σ1

Σ1 + Σ2
µ2,

1

Σ−1 + Σ−1
2

)
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Fundamental assumptions

• Markov assumption + the three following:
• Probability of state transition (prediction/motion model)

p(x |u, x ′) is linear with added Gaussian noise:

xt = Axt−1 + Btut + εt

• Sensor model (correction) is linear with added Gaussian noise

zt = Cxt + δt

• A-priory information about the state (belief) must have normal
distribution.
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Kalman filter

A-priory belief New measurement

Integration of the new measurement
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Kalman filter

Actual belief

New measurement

Action

Integration of the new
measurement
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Kalman filter - the algorithm

Algorithm Kalman filter(µt−1,Σt−1, ut , zt)

Prediction (action integration)
µ̄t = Atµt−1 + Btut
Σ̄t = AtΣt−1A

T
t + Rt

Correction (measurement inte-
gration)
Kt = Σ̄tC

T
t (CtΣ̄tC

T
t + Qt)

−1

µt = µ̄t + Kt(zt − Ct µ̄t)
Σt = (E − KtCt)Σ̄t

return µt,Σt
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Kalman filter - linear transformation
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Non-linear transformation
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Extended Kalman filter

xt = g(ut , xt−1)

zt = h(xt)
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Extended Kalman filter

• Taylor expansion in µ used for linearisation, i.e. matrix of
functions derivations – Jacobians

• Prediction:

g(ut , xt − 1) ≈ g(ut , µt−1) +
∂g(ut , µt−1)

∂xt−1
(xt−1 − µt−1)

g(ut , xt − 1) ≈ g(ut , µt−1) + Gt(xt−1 − µt−1)

• Correction:

h(xt) ≈ h(µ̄t) +
∂h(µ̄t)

∂xt
(xt − µ̄t)

h(xt) ≈ h(µ̄t) + Ht(xt − µ̄t)
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Extended Kalman filter - the algorithm

Algorithm Extended Kalman filter(µt−1,Σt−1, ut , zt)

Prediction (action integration)
µ̄t = g(ut , µt−1)
Σ̄t = GtΣt−1G

T
t + Rt

Correction (measurement integration)
Kt = Σ̄tH

T
t (HtΣ̄tH

T
t + Qt)

−1

µt = µ̄t + Kt(zt − h(µ̄t))

Ht = ∂h(µ̄t)
∂xt

Gt = ∂g(ut ,µt−1)
∂xt−1
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Motion model
• Motion model p(x |x ′, u) is needed for implementation of

Bayes filter.
• Motion model defines probability, that the robot will be in the

state x after realization of the action u in the state x ′ . The
robot operates in the plane, i.e. x = 〈x , y , φ〉

• Different models (depending on control type, whether
kinematics is considered, etc.)
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Odometry-based motion model
• Used when systems are equipped with wheel encoders.

Ideal case

• Robot moves from
〈
x̄ , ȳ , φ̄

〉
to
〈
x̄ ′, ȳ ′, φ̄′

〉
• Odometry information u = 〈δrot1 , δrot2 , δtrans〉

δtrans =
√

(x̄ ′ − x̄)2 + (ȳ ′ − ȳ)2

δrot1 = atan2(ȳ ′ − ȳ , x̄ ′ − x̄)− φ̄
δrot2 = φ̄′ − φ̄− δrot1
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Adding noise

• The measured motion is given by the true motion corrupted
with noise.

δ̂rot1 = δrot1 + εα1|δrot1 |+α2|δtrans |

δ̂trans = δtrans + εα3|δtrans |+α4(|δrot1 |+|δrot2 |)

δ̂rot2 = δrot2 + εα1|δrot2 |+α2|δtrans |

• Noise is determined by four parameters.

• Most difficult thing is to get the noise parameters –
experimentally.
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Typical distributions for probabilistic motion models

Normal distribution

ε
σ2 (x) =

1
√

2πσ2
e
− x2

2σ2

Triangular distribution

ε
σ2 (x) =

0 if |x| >
√

6σ2
√

6σ2−|x|
6σ2 otherwise
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Odometry-based model for sampling
u = 〈δrot1 , δrot2 , δtrans〉 , x = 〈x , y , φ〉 => x ′ = 〈x ′, y ′, φ′〉

Random control

δ̂rot1 = δrot1 + sample(α1|δrot1 |+ α2|δtrans |)
δ̂trans = δtrans + sample(α3|δtrans |+ α4(|δrot1 |+ |δrot2 |))

δ̂rot2 = δrot2 + sample(α1|δrot2 |+ α2|δtrans |)

Position determination

x ′ = x + δ̂transcos(φ+ δ̂rot1)

y ′ = y + δ̂transsin(φ+ δ̂rot1)

φ′ = φ+ δ̂rot1 + δ̂rot1

return
〈
x ′, y ′, φ′

〉
sample (normal distribution): 1

2

∑12
i=1 rand(−b, b)
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Calculating p(x |u, x ′)

Odometry values (u)

δtrans =
√

(x̄ ′ − x̄)2 + (ȳ ′ − ȳ)2

δrot1 = atan2(ȳ ′ − ȳ , x̄ ′ − x̄)− φ̄
δrot2 = φ̄′ − φ̄− δrot1

Ideal case

δ̂trans =
√

(x ′ − x)2 + (y ′ − y)2

δ̂rot1 = atan2(y ′ − y , x ′ − x)− φ
δ̂rot2 = φ′ − φ− δrot1

Probability calculation

p1 = prob(δrot1 − δ̂rot1 , α1|δrot1 |+ α2δtrans)

p2 = prob(δtrans − δ̂trans , α3δtrans + α4(|δrot1 |+ |δrot2 |)
p3 = prob(δrot2 − δ̂rot2 , α1|δrot2 |+ α2δtrans)

return p1p2p3 ←− independence assumption
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Application

• Resulting probability density depends on trajectory traversed,
not only on the final robot position!

• For complex cases, repeat the above algorithm accordingly.

• A typical example of the distribution (2D projection)
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Trajectory composition
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Sensor model

• The aim is to determine p(z |m, x).

• We will use proximity sensor (laser, sonar).

• Scan is composed from k measurements (beams):
z = {z1, z2, . . . , zk}

• Individual measurements are independent given the robot
position (strong assumption): P(z |x ,m) =

∏
k=1 P(zk |x ,m)
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Beam-based model - components

Measurement noise

phit (z|x,m) =

{
ηN(z, z∗, σ2

hit ) if 0 ≤ z ≤ zmax

0 otherwise

Normal distribution

Unexpected obstacles

pshort (z|x,m) =

{
ηλshort e

−λshort z if 0 ≤ z ≤ z∗

0 otherwise

Exponential distribution
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Beam-based model - components

Random measurement

prand (z|x,m) =

{
1

zmax
if 0 ≤ z ≤ zmax

0 otherwise

Uniform distribution

Max range

pmax (z|x,m) =

{
1 if z = zmax

0 otherwise

Discrete distribution :-(
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Resulting mixture density

p(z |x ,m) =


αhit

αshort

αrand

αmax


T 

phit(z |x ,m)
pshort(z |x ,m)
prand(z |x ,m)
pmax(z |x ,m)


• Model parameters are learned based on real data (E-M, GA)
• Expected distances zexp are determined by raytracing (time

consuming).
• Only selected beams are considered (e.g. eight); it increases

independence also.
• Expected distances can be pre-processed (for each 〈x , y , zφ〉)
• Multiplication of sensor model by λ < 1 reduces sensor

impact.
• Model is noncontinuous => approximate determination of

probability density can miss the right state.
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Motivation
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EKF-based localization

• Velocity motion model (u = (v , ω))x ′

y ′

θ′


︸ ︷︷ ︸

xt

=

x∗ + rsin(φ+ ω∆t)
y∗ − rcos(φ+ ω∆t)

θ + ω∆t


︸ ︷︷ ︸

g(ut ,xt−1)

+N(0,Rt)

• Map (list of landmarks 〈xi , yi , φi 〉)(
ri
φi

)
︸ ︷︷ ︸

z it

=

( √
(mj ,x − x)2 + (mj ,y − y)2

atan2(mj ,y − y ,mj ,x − x)− θ

)
︸ ︷︷ ︸

h(xt ,j ,m)

+N(0,Qt)
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Prediction
Jacobian of g w.r.t location

Gt =
∂g(ut , µt−1)

∂xt−1
=


∂x′

∂µt−1,x

∂x′

∂µt−1,y

∂x′

∂µt−1,θ

∂y ′

∂µt−1,x

∂y ′

∂µt−1,y

∂y ′

∂µt−1,θ

∂θ′

∂µt−1,x

∂θ′

∂µt−1,y

∂θ′

∂µt−1,θ


Motion noise

Mt =

(
(α1|vt |+ α2|ωt |)2 0

0 (α3|vt |+ α4|ωt |)2

)
Jacobian of g w.r.t control

Vt =
∂g(ut , µt−1)

∂ut
=


∂x′

∂vt
∂x′

∂ωt
∂y ′

∂vt

∂y ′

∂ωt
∂θ′

∂vt
∂θ′

∂ωt


Predicted mean

µt = g(ut , µt−1)

Predicted covatiance

Σt = GtΣt−1G
T
t + VtMtV

T
t
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Prediction
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Correction
Predicted measurement mean

ẑt =

( √
(mx − µt,x)2 + (my − µt,y )2

atan2(my − µt,y ,mx − µt,x)− µt,θ

)
Jacobian of h w.r.t location

Ht =
∂h(µt ,m)

∂xt
=

(
∂rt
∂µt,x

∂rt
∂µt,y

∂rt
∂µt,θ

∂φt

∂µt,x

∂φt

∂µt,y

∂φt

∂µt,θ

)

Qt =

(
σ2
r 0

0 σ2
φ

)
Predicted measurement covariance

St = HtΣtH
T
t + Qt

Gain

Kt = ΣtH
T
t S−1

t

Updated mean and covariance

µt = µt + Kt(zt − ẑt)

Σt = (I − KtHt)Σt
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Observation
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Correction
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Estimation sequence 1
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Estimation sequence 2
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