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Gentle introduction to probability theory

Idea: explicit representation of uncertainty using calculus of
the probability theory

p(X=x) probability that the random variable X is x
0<p(x)<1

p(true) =1, p(false) =0

p(AV B) = p(A) + p(B) — p(AN B)

True
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Discrete and continuous random variable

e Discrete: X is countable, i.e. ped
X =Xx1,X2,...,Xp
e Continuous: X can have an =
uncountable number of values (from
some interval)
e p is probability density 1 -
e Various distributions - :
e Most known: Normal (Gaussian) 05
2
e p(x) = Uj%e—“;;g) \




Probability

Multi-dimensional normal distribution

e Eigenvalues and eigenvectors of the covariance matrix define
an ellipse.
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Joint and conditional probability distribution

e p(X=xaY=y)=p(xy)
If X and Y are independent then

p(x,y) = p(x)p(y)

e p(x|y) is probability x given y

_ p(xy)

p(x,y) = p(x|ly)p(y)
e If X a Y are independent then

p(xly) = p(x)
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Total probability theorem

Discrete case Continuous space

> p(x)=1 / p(x)dx = 1
p(x) = ZP(XaY) p(x) = /p(x,y)dy

y

p() =" p(xIy)p(y) p(x) = / p(x1y)p(y)dy

Y
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Bayes' theorem

p(x,y) = p(xly)p(y) = p(y|x)p(x)

=
_ plylx)p(x) _ likelihood - prior
Pixly) = ply) evidence
ploty) = PR — oty 00
-1 1
U SN (TS FEY
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Simple example of state estimation

e Assume a robot obtains measurement z

What is p(open|z)?

p(open|z) is diagnostic

p(z|open) is causal

Often causal knowledge is easier to obtain (counting
frequencies)

Bayes rule allows us to use causal:

p(z|open)p(open)
p(2)

popen|z) =
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Example - open doors

e p(z|lopen) = 0.6 p(z|—open) = 0.3
e p(open) = p(—=) =05
p(zlopen)p(open)
ZJopen)p(open) + p(z]~open)p(~open)
0.6-0.5 2

_ =067
popen|z) = 51 +03-05 3

plopenlz) =

e z raises probability that the door is open.
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Example - second measurement

e p(zz|open) = 0.5 p(zz|—~open) = 0.6

e p(open|z;) = 3

p(z2|open)p(open|z1)

p(open|z;z1) =
p(

zp|open)p(open|z1) + p(zi|—open)p(—open|z;)
1.2
= . £ 5
23
1.2,3.1
273+ts5'3 8

e 7, lowers the probability that the door is open.



Probability

Actions

e Often the world is dynamic since

e actions carried out by the robot,
e actions carried out by other agents,
e or just the time passing by change the world (plants grow).

e Actions are never carried out with absolute certainty.

e In contrast to measurements, actions generally decrease the
uncertainty.

e To incorporate the outcome of an action u into the current
“belief’, we use the conditional pdf

e This term specifies the pdf that executing u changes the state
from x’ to x.
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Continuing the example - closing the door

p(x|u, x") for u = "close door”

-3

p(X, U) = Z p(X’U,X’)p(X’)

If the door is open, the action "close door” succeeds in 90% of all
cases.
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Continuing the example - closing the door

p(closed|u) = Zp(c/osed\u,x’)p(x')

= p(closed|u, open)p(open)

+ p(closed|u, closed)p(closed)
9. 5,13_5
10 8 18 16

> p(open|u, x')p(x')

p(open|u)

p(open|u, open)p(open)
+ p(open|u, closed)p(closed)
15 03 1
10 818 16
= 1 — p(closed|u)
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Motivation
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Sensor model

EKF-based locali
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Motivation
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Motivation
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Motivation
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Motivation
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Bayes filter: the framework

e Given:
e Stream of observations z and actions u:

dt = {ula Z1y v ey U, Zt}

e Sensor model p(z|x)

e Action model p(x|u, x")

e Prior probability of the system state p(x)
e Wanted:

e Estimate of the state X of a dynamic system
e The posterior of the state is also called belief:

Bel(xt) = p(xt|u1, z1, - - -, Ut, 2¢)
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Markov assumption

p(z¢|x0:t, 216, U1:t) = p(ze|xe)

P(Xt|X1:t—1721:t, Ul:t) = p(Xt|Xt—17Ut)

Underlying assumptions
e Static world
¢ Independent noise

e Perfect model, no approximation errors
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Bayes filter - derivation

Bel(x:)| = p(xt|lu1,z1,...,us,2¢)
Bayes = np(ze|xe, u1, 21, .. ue)p(Xe|ur, 21, .oy )
Markov = np(ze|xe)p(xe|ut, z1, .. ., ut)
Toralprob. = NP(Z¢|xt) / p(xe|ut, z1, ..., U, Xe—1)
p(xt—1|u1, z1, ..., u)dxe—1
makor = np(zelxe) | p(xelue, xe—1)p(xe-1lur, 21, - - ue)dxe—1
Markov = np(zt|xt) / p(xt|ue, xe—1)p(xe—1|u1, z1, - - -, ze—1)dXe—1

= 77p(zt|Xt)/p(Xt|UtaXt—l)Bel(Xt—l)dXt—l




Bayes filter

Bayes filter

Bel(xt) = np(zt\xt)/p(xt|ut,xt_l)Be/(xt_l)dxt_l

if disa z then if disa u then
n=20 for all x do
for all x do Bel'(x) =
Bel'(x) = p(z|x)Bel(x) [ p(x|u,x")Bel(x")dx’
n =n+ Bel'(x) end for
end for end if

for all x do
Bel'(x) = n~1Bel'(x)
end for
end if

return Bel'(x)
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Bayes filters are familiar

e Kalman filters

e Histogram filters

e Particle filters

e Hidden Markov models

e Dynamic Bayesian networks

e Partially Observable Markov Decision Processes (POMDPs)



Bayes filter

Non-parametric filters

Don't rely on a fixed functional form of the posterior.

Approximation of probability density by a finite number of
values.

Adaptive (based on discretization), they handle nonlinearities.

The number of samples biases the speed of the algorithm and
the quality of the filter.

Histogram x particle filter

px)
[ Histogram
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Histogram filter

IIlﬁlill




Histogram filter

Histogram filter
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Histogram filter
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Histogram filter




Histogram filter

Histogram filter




Histogram filter

Histogram filter

if disa z then
n=0 Bel(L; = 1)
for all x do o
Bel'(x) = p(z|x)Bel(x) - ‘
1 =1+ Bel'(x) |
end for ‘
for all x do 1 f
Bel'(x) = n~1Bel'(x) 0| = = Y ‘
end for ‘
else if d is a u then L =
for all x do (0’ 0, 0) ~
Bel'(x) = [ p(x|u,x")Bel(x")dx’
end for Bel(x: = (x,y,9))
end if

return Bel'(x)
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Histogram filter

e To update the belief upon sensory input and to carry out the
normalization one has to iterate over all cells of the grid =>
complexity O(n?)

e Selective update

e Only a part of state space is updated ...
e ... but the quality of the localization should be monitored

¢ Dynamic state space decomposition — kd-trees (density trees):
division grain depends on probability density (higher pdf =>

finer grain)
" =




Particle filter

Particle filter

Probability density represented by “appropriately” (randomly)
placed particles:

Bel(x¢) {X( }/ 1

Particles are weighted.

Particles for time t are chosen according to the weights in
time t — 1.

Really simple to implement.

Most universal Bayes filter: representation of

yeeeyM

distributions and processes
p(x)
— Samples
=

L




Particle filter

Particle filter




Particle filter

Particle filter
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Particle filter

Particle filter
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Particle filter - the algorithm

Particle_filter(S¢—1, us—1, 2¢)

St = 0, n=20

for i=1,...,ndo Generate new particles
Sample index j; from the discrete distribution given by w; 1
Sample x{ z p(x¢|x¢—1, ur—1) using x| and u;_q

w; = p(zt|x;) Compute importance weight
n=mn+w o Update normalization factor
Se =S U{(x,w{)} Insert a particle

end for

fori=1,...,ndo i Normalize weights
wi =
t n
end for .
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Importance sampling
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Importance sampling
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Importance sampling
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Video 1 Video 2



Kalman filter

Kalman filter

e Unimodal representation of probability density by a Gaussian

e

~ N(pu, 02)

1 _(x=p)?
= e 20

2o b b
_ LIRS TP L
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Linear transformation

e Linear transformation preserves normal distribution.

XNN(%U2) _ 2 2
Y—aX 4 b => Y ~ N(ap + b,a“c")
Xy~N(p1,07) 5 i 1
’ => p(X1X3) ~ N ,
X2NN(ILL2,O'%) P( 1 2) O’% + 0_5 M1+ 0_% T O’% H2 0;2 T 052

XNN(,U,,Z) _ T
Yo Ax B }_> Y ~ N(Ap + B,ATAT)

X]_NN(‘LL]_ Z]_) z2 z1 1
’ => p(X1Xo) ~ N ,
Xo~N(pi2, X2) piXuXz) 21+22M1+ 214—22“2 Y1yt
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Fundamental assumptions

e Markov assumption + the three following:

e Probability of state transition (prediction/motion model)
p(x|u, x’) is linear with added Gaussian noise:

Xt = Axe—1 + Brup + &4
e Sensor model (correction) is linear with added Gaussian noise
Zy = CXt —+ §t

e A-priory information about the state (belief) must have normal
distribution.
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Kalman filter

A-priory belief New measurement

Integration of the new measurement



Kalman filter

Kalman filter

&

Actual belief Action

AN AN

Integration of the new
measurement

New measurement
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Kalman filter - the algorithm

Algorithm Kalmanfilter(p¢—1, X¢—1, Ug, 2¢)

Prediction (action integration)
fir = Atjie—1 + Brup

Z_t = Atzt_lA;r + Rt




Kalman filter

Kalman filter - linear transformation

6 6
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Kalman filter

Non-linear transformation

piy)
— Gaussian of piy)
4 ) % Mean of piy)

Y=004

— Function g
= Meanp

O

-~
W

-4 M .
0 0204 06 0.8

g Mean p
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Extended Kalman filter

6 3
ply) = Function g
— Gaussian of piy) = Taylor approx.
4 || — EFK Gaussian 4 &= Meanp
O
Z 2
x L4
o
-2
- . . . . -4 .
0 02040608 0 0.5 1
6
g Mean p
_4
2
0




Probability Probability Bayes filter Histogram filter Particle filter Kalman filter Motion model Sensor model EKF-based locali

Extended Kalman filter

e Taylor expansion in p used for linearisation, i.e. matrix of
functions derivations — Jacobians

e Prediction:

(g)t(aﬂt 1)(Xt L —

glue,xt — 1) =~ g(ug, pe—1) + Ge(xe—1 — pe—1)
e Correction:

glug, xe —1) ~ glue, pe—1)+ fe—1)
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Extended Kalman filter - the algorithm

Algorithm Extended_Kalman filter(ps—1, X¢—1, ut, z¢)

Prediction (action integration)
fie = g(ut, te—1)

X_t = Gtzt_l GtT 4F Rt




Motion model

Motion model

e Motion model p(x|x’, u) is needed for implementation of
Bayes filter.

e Motion model defines probability, that the robot will be in the
state x after realization of the action u in the state x’ . The
robot operates in the plane, i.e. x = (x,y, )

e Different models (depending on control type, whether
kinematics is considered, etc.)

Y

|
:
<0.0> X
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Odometry-based motion model

e Used when systems are equipped with wheel encoders.

e Robot moves from (%, ¥, ) to (x,y’,¢')
e Odometry information u = (drot,, Orotys Otrans)

5trans — \/()_(, - )?)2 + ()_/I - }7)2
Sroty, = atan2(y' —y, X —X) — ¢
6rot2 = Q_S/ - QE - 6rot1




Motion model

Adding noise

e The measured motion is given by the true motion corrupted
with noise.

5r0t1 = 6r0t1 =+ €a1|5mt1 |+0¢2|5trans|
5trans = 5trans + 5a3|6t,a,,s|+o¢4(|5,ot1 [+13roty |)
6!’01‘2 — 6r0t2 + 6a1|5rot2 |+a2|6trans|

e Noise is determined by four parameters.

e Most difficult thing is to get the noise parameters —
experimentally.
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Typical distributions for probabilistic motion models

Normal distribution Triangular distribution
b b -b b
1 _% 0 if |x| > V652
e, 2(x) = me 20 5200 = Moor —ixi 62§;|x\ otherwise
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Odometry-based model for sampling
u= <5rot1,5rot275trans> , X = <X7y,¢> => X/ = <Xl,y/,gb/>

Random control

5rot1 + Sample(al‘(srot1| + 062|6trans|)

6r0t1
Otrans Otrans + Samp/e(@3’5trans’ + a4(‘5rot1’ + ‘5rot2 ’))
5rot2 = (5mt2 + sample(al\émtz\ + 062|5trans|)

Position determination

X' = X+ dtranscos(¢ + brot, )
y = y+ StransSin(¢ + Srotl)
le = Qb + Srotl + Srotl

return <x', v, gz§/>

sample (normal distribution): 3 Z,lil rand(—b, b)
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Calculating p(x|u, x")
Y

Odometry values (u)
Otrans = \/()_‘/ - )?)2 + (}_’/ - }_’)2
Sroty atan2(y' =y, —x) — ¢
5rot2 = (Z_bl - QZ - 5rot1

Ideal case

8trans = \/(X/ —x)2+(y —y)?

brot, = atan2(y’ —y,x' —x)—¢

6rot2 = d), - d) - 5rot1

Probability calculation

N

P11 = prOb((srotl - 5rot17 Qg |6rot1| + 0426trans)
p2 = prOb((Strans - 5tran57 Q30 ¢rans + a4(|6rot1| + |5rot2 |)
p3 = prOb((;roQ - 6rot27 a1|6rot2| + 0426trans)

return pypops <— independence assumption
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Application

e Resulting probability density depends on trajectory traversed,
not only on the final robot position!

e For complex cases, repeat the above algorithm accordingly.

e A typical example of the distribution (2D projection)
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Trajectory composition

Start

L 2
o

10 meters




Sensor model

Sensor model

The aim is to determine p(z|m, x).

We will use proximity sensor (laser, sonar).

Scan is composed from k measurements (beams):
z={z1,22,...,2k}

Individual measurements are independent given the robot
position (strong assumption): P(z|x, m) = [[,_; P(zk|x, m)
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Beam-based model - components

Measurement noise Unexpected obstacles

p(zt | @,m) p(zF | z,m)

s

1 .
Lk = LR .
i = max ~ ~ITLAX

nN(z, 2%, 0%,) 0 <z < Zmax

phit(z|x, m) = {0

Aoz *
nx e “short? if0<z<z
Pstort (2], m) = {0 short

otherwise otherwise

Normal distribution Exponential distribution
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Beam-based model - components

Random measurement

p(zF | x4, m)

L5 Zmax

L if0 < 7z < zmax

zlx, m) = Zmax
Pran (2%, m) {0 e

Uniform distribution

Max range

plzf | z¢,m)

[
Iy Zmax

1 if z=zmax
Pmax(z|x, m) =

0 otherwise

Discrete distribution :-(



Sensor model

Resulting mixture density

T
Qhijt phit(z|x, m)

p(Z|X, m) _ Qshort pshort(Z|X7 m)
Qrand prand(z|X7 m)
QUmax Pmax(z|x, m)

o
“t

Model parameters are learned based on real data (E-M, GA)
Expected distances z,, are determined by raytracing (time
consuming).

Only selected beams are considered (e.g. eight); it increases
independence also.

Expected distances can be pre-processed (for each (x,y, z¢))
Multiplication of sensor model by A < 1 reduces sensor
impact.

Model is noncontinuous => approximate determination of
probability density can miss the right state.
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Motivation




EKF-based locali

EKF-based localization

e Velocity motion model (v = (v,w))

x' x* + rsin(¢ + wAt)
y'| = | y* = rcos(¢p + wAt) | +N(0, R:)
¢’ 6+ wAt

e g(ut,xe—1)
e Map (list of landmarks (x;, y;, ¢;))
i\ _ (Vme—xP o+ (myy = y)?
<¢I> - (atan2(mj7y -y, mj,X _ X) _ 9 +N(07 Qt)
——

Zé’ h(Xtajvm)
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Gt

M,

Vi

Prediction
Jacobian of g w.r.t location
ox’ ox’ ox’
Ope—1,x  Ope—a, Ope—1,0
ag(utmu't—l) _ 8ty' Bty' ! c';y’
B Ope—1,x Ope—1, Ope—1,0
Ox:—1 0’ a0’ e
Ope—1,x  Ope—1,y  Ope—1,0
Motion noise
2
(az|ve| + azlw:|) 0
2
0 (as|ve| + aglwe|)
Jacobian of g w.r.t control
' ox
o 5]
Og(ut, pre—1) _ g_;; g_‘}]’
\Z W,
uy 20 20
ovy Ow;

Predicted mean
g(“n/it—l)

Predicted covatiance
G:Xi 1Gl + ViM, V"

EKF-based locali
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Histogram filter

Particle filter

Predict

Kalman filter

ion

Motion model

Sensor model  EKF-based locali
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Correction
Predicted measurement mean
3, = \/(mx - ﬁt,x)2 + (my - ﬁt,y)2
atan2(my — iy, Mx — fle ) — Aeg
Jacobian of h w.r.t location
_ ore ore ore
g - oh@em) (o5 Oh, A,
t — T a. = APt Ot ooy
Ox; At 2Pt 2P

aﬁt,x aﬁt,y aﬁr,ﬂ

o2 0
0 oy

Predicted measurement covariance

S = HtfthT + Q:
Gain
Kt = fthTSt_l

Updated mean and covariance
e = He+ Ke(ze — 2)
Zt - (/ - Kth)Zt
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Observation
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Probability

9 [deg]

4 [deg]
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Correction
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Estimation

sequence 1

EKF-based locali

00

L L
100 o 00 200 200 00 500 &0 700
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Estimation sequence 2

s 00
400 400
00 a00
200 200

L L L L
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