
1

Content
Lecture 6b Virtual memory

1. Virtual memory concept

2. Paging on demand

3. Page replacement

4. Algorithm LRU and it’s approximation

5. Process memory allocation, problem of thrashing

2

Virtual memory

• Virtual memory
– Separation of physical memory from user logical

memory space

– Only part of the program needs to be in memory for
execution.

– Logical address space can therefore be much larger
than physical address space.

– Allows address spaces to be shared by several
processes.

– Allows for more efficient process creation.

• Synonyms
– Virtual memory – logical memory

– Real memory – physical memory

Virtual Memory That is Larger Than Physical Memory



Virtual­address Space
• Process start brings only

initial part of the program
into real memory. The virtual
address space is whole
initialized.

• Dynamic exchange of virtual
space and physical space is
according context reference.

• Translation from virtual to
physical space is done by
page or segment table

• Each item in this table
contains:

• valid/invalid attribute –
whether the page if in
memory or not

• resident set is set of
pages in memory

• reference outside resident
set create page/segment
fault

Shared Library Using Virtual Memory

Page fault
• With each page table entry a valid–invalid bit is

associated
(1  in-memory, 0  not-in-memory)

• Initially valid–invalid but is set to 0 on all entries

• Example of a page table snapshot:

• During address translation, if valid–invalid bit in page
table entry is 0  page fault



Frame # valid-invalid bit

page table

1
0
1
1
0
0

1
0



7

Paging techniques

• Paging implementations
– Demand Paging (Demand Segmentation)

– Lazy method, do nothing in advance

– Paging at process creation

– Program is inserted into memory during process start-up

– Pre-paging

– Load page into memory that will be probably used

– Swap pre-fetch

– With page fault load neighborhood pages

– Pre-cleaning

– Dirty pages are stored into disk

Demand Paging
• Bring a page into memory only when it is needed

– Less I/O needed

– Less memory needed

– Faster response

– More users

– Slow start of application

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  page fault  bring to memory

• Page fault solution

– Process with page fault is put to waiting queue

– OS starts I/O operation to put page into memory

– Other processes can run

– After finishing I/O operation the process is marked as ready

Steps in Handling a Page Fault

Locality In A Memory­Reference Pattern

11

Locality principle
• Reference to instructions and data creates clusters

• Exists time locality and space locality

– Program execution is (excluding jump and calls) sequential

– Usually program uses only small number of functions in time
interval

– Iterative approach uses small number of repeating
instructions

– Common data structures are arrays or list of records in
neighborhoods memory locations.

• It’s possible to create only approximation of future usage
of pages

• Main memory can be full

– First release memory to get free frames

12

Other paging techniques
• Improvements of demand paging

– Pre-paging

– Neighborhood pages in virtual space usually depend and can be
loaded together – speedup loading

– Locality principle – process will probably use the neighborhood page
soon

– Load more pages together

– Very important for start of the process

– Advantage: Decrease number of page faults

– Disadvantage: unused page are loaded too

– Pre-cleaning

– If the computer has free capacity for I/O operations, it is possible to
run copying of changed (dirty) pages to disk in advance

– Advantage: to free page very fast, only to change validity bit

– Disadvantage: The page can be modified in future - boondoggle

What happens if there is no free frame?

• Page replacement – find some page
(victim) in memory, but not really in
use, swap it out

– algorithm

– performance – want an algorithm
which will result in minimum number
of page faults

• Same page may be brought into
memory several times

Page Replacement

• Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

• Some pages cannot be replaced, they are locked (page
table, interrupt functions,…)

• Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

• Page replacement completes separation between logical
memory and physical memory – large virtual memory can
be provided on a smaller physical memory

• We want to have the lowest page-fault rate

• Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

Page Replacement with Swapping

Graph of Page Faults Versus The Number of
Frames

17

Algorithm First-In-First-Out (FIFO)
• 3 frames (memory with only 3 frames)

• 4 frames of memory

– Beladyho anomalie (more frames – more page faults)

• FIFO – simple, not effective

– Old pages can be very busy

9 Page faults

543215214321Reference:

 Page faults

1

Frame content

2

1

3

2

1

3

2

4

3

1

4

2

1

4

2

1

5

2

1

5

4

3

5

4223

3312

5551

Frame number

10 Page
faults

3334444444

543215214321Reference:
Page faults

1
Frame content

2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
5

3
1
5

2
5
4

2223
1112
4551

Frame number

18

Optimal algorithm
• Victim – Replace page that will not be used

for longest period of time
• We need to know the future

– Can be only predicted

• Used as comparison for other algorithms
• Example: memory with 4 frames

– As example we know the whole future

6 Page faults

(The best
possible result)

5555554444

543215214321Reference:

1

Frame content

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

4

3333

2222

4111

Frame number

19

Least Recently Used
• Prediction is based on history

– Assumption: Page, that long time was not used will be
probably not used in future

• Victim – page, that was not used for the longest period

• LRU is considered as the best approximation of optimal algorithm

• Example: memory with 4 frames

• Best result 6 page faults, LRU 8 page faults, FIFO 10 page faults

8 Page faults
3334444444

543215214321Reference:
Page faults

1
Frame content

2
1

3
2
1

3
2
1

3
2
1

3
2
1

5
2
1

5
2
1

4
2
5

4553
2222
1111

Frame number

20

LRU – implementation
• It is not easy to implement LRU

– The implementation should be fast

– There must be CPU support for algorithm – update step cannot be
solved be SW because is done by each instruction (each memory
reading)

• Counter implementation

– Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter

– When a page needs to be changed, look at the counters to determine
which are to change

• Stack implementation – keep a stack of page numbers in a
double link form:

– Page referenced:

– move it to the top

– requires 6 pointers to be changed

– No search for replacement

21

Approximation of LRU
• Reference bit

– With each page associate a bit, initially = 0

– When page is referenced bit set to 1

– Replace the one which is 0 (if one exists). We do not know the
order, however.

• Second chance
– Need reference bit

– Clock replacement

– If page to be replaced (in clock order) has reference bit = 1 then:

– set reference bit 0

– leave page in memory

– replace next page (in clock order), subject to same rules

– In fact it is FIFO with second chance

22

Algorithm Second Chance
Page fault test the frame that is
pointed by clock arm.

Depend on access a-bit:

• if a=0:

take this page as victim

• if a=1:

turn a=0, and keep page in
memory

turn the clock arm forward

• if you have no victim do the
same for the next page

– Numerical simulation of this
algorithm shows that it is really
close to LRU

23

Modification LRU
• NRU – not recently used

– Use a-bit and dirty bit d-bit
– Timer regularly clean a-bit and therefore it is possible

to have page with d-bit=1 and a-bit=0.
– Select page in order (da): 00, 01, 10, 11

– Priority of d-bit enable to spare disk operation and time

• Ageing

– a-bit is regularly saved and old-values are shifted

– Time window is limited by HW architecture

– If the history of access to page is 0,0,1,0,1, then it
corresponds to number 5 (00101)

– The page with the smallest number well be removed

24

Counter algorithms

• Reference counter
– Each frame has reference counter

– For „swap-in“ – the counter is set to 0

– Each reference increments the counter

• Algorithm LFU (Least Frequently Used)
– replaces page with smallest count

• Algorithm MFU (Most Frequently Used)
– based on the argument that the page with

the smallest count was probably just
brought in and has yet to be used

25

Processes and paging

• Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame from
another

• Local replacement – each process selects from only its own
set of allocated frames

• Principles of frame allocation

– Fixed allocation

– Process receives fixed number of frames (Can be fixed for each process or can
depends on it’s virtual space size)

– Priority allocation

– Process with higher priority receives more frames to be able to run faster

– If there is page fault process with higher priority gets frame from process with
lower priority

Fixed Allocation

• Equal allocation – For example, if there are
100 frames and 5 processes, give each
process 20 frames.

• Proportional allocation – Allocate according to
the size of process

• Example:

m
S
s

pa

m

sS

ps

i
ii

i

ii








 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

1









a

a

s

s

m

Dynamic Allocation

• Priority allocation

– Use a proportional allocation scheme
using priorities rather than size

– If process Pi generates a page fault,

– select for replacement one of its frames

– select for replacement a frame from a process
with lower priority number

• Working set

– Dynamically detect how many pages is
used by each process

Thrashing
• If a process does not have “enough” pages, the page-fault rate is very

high. This leads to:

– low CPU utilization

– operating system thinks that it needs to increase the degree of multiprogramming

– another process can be added to the system

• Thrashing  a process is busy swapping pages in and out

Working-Set Model

• How many pages process need?

• Working set define set of pages that were used by last N instructions

• Detection of space locality in process

•   working-set window  a fixed number of page references
Example: 10,000 instruction

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in
time)

– if  too small will not encompass entire locality

– if  too large will encompass several localities

– if  =   will encompass entire program

• D =  WSSi  total demand frames

• if D > m  Thrashing

• Policy if D > m, then suspend one of the processes

Working­set model

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000

– Timer interrupts after every 5000 time units

– Keep in memory 2 bits for each page

– Whenever a timer interrupts copy and sets the values
of all reference bits to 0

– If one of the bits in memory = 1  page in working
set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000
time units

32

Working set

• If sum of working sets for all process Pi-
WSi exceeds the whole capacity of
physical memory it creates thrashing

• Simply protection before thrashing

– Whole one process is swapped out

Page Fault Frequency ­ PFF

• PFF is a variable-space algorithm that
uses a more ad hoc approach

• Attempt to equalize the fault rate among
all processes, and to have a “tolerable”
system-wide fault rate

– Monitor fault rate for each process

– If fault rate is above given threshold, give it
more memory, so that it faults less

– If fault rate is bellow threshold, take away
memory, so should fault more, allowing
someone else to fault less

34

Page size
• Big pages

– Small number of page faults

– Big fragmentation

– If page size is bigger
then process size,
virtual space is not necessary

• Small pages
– Big number of small pages

– Page is more frequently in memory → low number of page faults
– Smaller pages means

– Smaller fragmentation but decrease the effectivness of disk operations

– The bigger page table and more complicated selection of victim for swap out
– Big page table

– PT must be in memory, cannot be swaped out – PT occupying real memory

– Placing part of PT into virtual memory leads to more page faults (access to invalid
page can create 2 page faults, first fault of page table and fault of page)

P
a

ge
 fa

ul
t f

re
qu

en
cy

 →

Page size→ P

Lot of
small

pages in
page table

Whole
process in
one page

Less pages but
some pages contain

unused data

35

Programming techniques and page faults
• Programming techniques have influence to page faults

double data[512][512];

– Suppose that double occupy 8 byts

– Each line of array has 4 KB and is stored in one page 4 KB

– It is good to know how the data are stored in virtual space

Approach 1:

for (j = 0; j <512; j++)
for (i = 0; i < 512; i+

+)
data[i][j] =

i*j;
Can have

512 x 512 = 262 144
page faults

Approach 2:

for (i = 0; i <512; i++)
for (j = 0; j < 512; j+

+)
data[i][j] =

i*j;
Only 512 page faults

36

Paging in Windows XP
• Uses demand paging with pre-paging clusters. Clustering brings in

pages surrounding the faulting page.

• Processes are assigned working set minimum and working set
maximum

• Working set minimum is the minimum number of pages the
process is guaranteed to have in memory

• A process may be assigned as many pages up to its working set
maximum

• When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

• Working set trimming removes pages from processes that have
pages in excess of their working set minimum

• There can be thrashing
– Recommended minimal memory size – 128 MB

– Real minimal memory size – 384 MB

	Content
	Virtual memory
	Virtual Memory That is Larger Than Physical Memory
	Virtual-address Space
	Shared Library Using Virtual Memory
	Page fault
	Paging techniques
	Demand Paging
	Steps in Handling a Page Fault
	Locality In A Memory-Reference Pattern
	Locality principle
	Other paging techniques
	What happens if there is no free frame?
	Page Replacement
	Page Replacement with Swapping
	Graph of Page Faults Versus The Number of Frames
	Algorithm First-In-First-Out (FIFO)
	Optimal algorithm
	Least Recently Used
	LRU – implementation
	Approximation of LRU
	Algorithm Second Chance
	Modification LRU
	Counter algorithms
	Processes and paging
	Fixed Allocation
	Dynamic Allocation
	Thrashing
	Working-Set Model
	Working-set model
	Keeping Track of the Working Set
	Working set
	Page Fault Frequency - PFF
	Page size
	Programming techniques and page faults
	Paging in Windows XP

