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Virtual memory

• Virtual memory 
– Separation of physical memory from user logical 

memory space

– Only part of the program needs to be in memory for 
execution.

– Logical address space can therefore be much larger 
than physical address space.

– Allows address spaces to be shared by several 
processes.

– Allows for more efficient process creation.

• Synonyms
– Virtual memory – logical memory

– Real memory – physical memory 



Virtual Memory That is Larger Than Physical Memory





Virtual­address Space
• Process start brings only 

initial part of the program 
into real memory. The virtual 
address space is whole 
initialized.

• Dynamic exchange of virtual 
space and physical space is 
according context reference.

• Translation from virtual to 
physical space is done by 
page or segment table

• Each item in this table 
contains:

•  valid/invalid  attribute – 
whether the page if in 
memory or not

•  resident set is set of 
pages in memory

•  reference outside resident 
set create page/segment 
fault



Shared Library Using Virtual Memory



Page fault
• With each page table entry a valid–invalid bit is 

associated
(1  in-memory, 0  not-in-memory)

• Initially valid–invalid but is set to 0 on all entries

• Example of a page table snapshot:

• During address translation, if valid–invalid bit in page 
table entry is 0  page fault



Frame # valid-invalid bit

page table

1
0
1
1
0
0

1
0


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Paging techniques

• Paging implementations
– Demand Paging (Demand Segmentation)

– Lazy method, do nothing in advance

– Paging at process creation

– Program is inserted into memory during process start-up

– Pre-paging

– Load page into memory that will be probably used

– Swap pre-fetch

– With page fault load neighborhood pages

– Pre-cleaning

– Dirty pages are stored into disk 



Demand Paging
• Bring a page into memory only when it is needed

– Less I/O needed

– Less memory needed 

– Faster response

– More users

– Slow start of application

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  page fault  bring to memory

• Page fault solution

– Process with page fault is put to waiting queue

– OS starts I/O operation to put page into memory

– Other processes can run

– After finishing I/O operation the process is marked as ready



Steps in Handling a Page Fault



Locality In A Memory­Reference Pattern
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Locality principle
• Reference to instructions and data creates clusters

• Exists time locality and space locality

– Program execution is (excluding jump and calls) sequential

– Usually program uses only small number of functions in time 
interval

– Iterative approach uses small number of repeating 
instructions

– Common data structures are arrays or list of records in 
neighborhoods memory locations.

• It’s possible to create only approximation of future usage 
of pages

• Main memory can be full 

– First release memory to get free frames
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Other paging techniques
• Improvements of demand paging

– Pre-paging

– Neighborhood pages in virtual space usually depend and can be 
loaded together – speedup loading

– Locality principle  – process will probably use the neighborhood page 
soon

– Load more pages together

– Very important for start of the process

– Advantage: Decrease number of page faults 

– Disadvantage: unused page are loaded too

– Pre-cleaning

– If the computer has free capacity for I/O operations, it is possible to 
run copying of changed (dirty) pages to disk in advance

– Advantage: to free page very fast, only to change validity bit

– Disadvantage: The page can be modified in future  - boondoggle



What happens if there is no free frame?

• Page replacement – find some page 
(victim) in memory, but not really in 
use, swap it out

– algorithm

– performance – want an algorithm 
which will result in minimum number 
of page faults

• Same page may be brought into 
memory several times



Page Replacement

• Prevent over-allocation of memory by modifying page-fault 
service routine to include page replacement

• Some pages cannot be replaced, they are locked (page 
table, interrupt functions,…)

• Use modify (dirty) bit to reduce overhead of page 
transfers – only modified pages are written to disk

• Page replacement completes separation between logical 
memory and physical memory – large virtual memory can 
be provided on a smaller physical memory

• We want to have the lowest page-fault rate

• Evaluate algorithm by running it on a particular string of 
memory references (reference string) and computing the 
number of page faults on that string



Page Replacement with Swapping



Graph of Page Faults Versus The Number of 
Frames
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Algorithm First-In-First-Out (FIFO) 
• 3 frames (memory with only 3 frames)

• 4 frames of memory 

– Beladyho anomalie (more frames – more page faults)

• FIFO – simple, not effective

– Old pages can be very busy
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Optimal algorithm 
• Victim – Replace page that will not be used 

for longest period of time
• We need to know the future 

– Can be only predicted

• Used as comparison for other algorithms
• Example: memory with 4 frames

– As example we know the whole future

6 Page faults

(The best 
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Least Recently Used
• Prediction is based on history

– Assumption: Page, that long time was not used will be 
probably not used in future

• Victim – page, that was not used for the longest period

• LRU is considered as the best approximation of optimal algorithm

• Example: memory with 4 frames

• Best result 6 page faults, LRU 8 page faults, FIFO 10 page faults

8 Page faults
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LRU – implementation
• It is not easy to implement LRU

– The implementation should be fast

– There must be CPU support for algorithm – update step cannot be 
solved be SW because is done by each instruction (each memory 
reading)

• Counter implementation

– Every page entry has a counter; every time page is referenced through 
this entry, copy the clock into the counter

– When a page needs to be changed, look at the counters to determine 
which are to change

• Stack implementation – keep a stack of page numbers in a 
double link form:

– Page referenced:

– move it to the top

– requires 6 pointers to be changed

– No search for replacement
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Approximation of LRU 
• Reference bit

– With each page associate a bit, initially = 0

– When page is referenced bit set to 1

– Replace the one which is 0 (if one exists).  We do not know the 
order, however.

• Second chance
– Need reference bit

– Clock replacement

– If page to be replaced (in clock order) has reference bit = 1 then:

– set reference bit 0

– leave page in memory

– replace next page (in clock order), subject to same rules

– In fact it is FIFO with second chance
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Algorithm Second Chance
Page fault test the frame that is 
pointed by clock arm.

Depend on access a-bit:

• if a=0:

take this page as victim

• if a=1:

turn a=0, and keep page in 
memory

turn the clock arm forward

• if you have no victim do the 
same for the next page

– Numerical simulation of this 
algorithm shows that it is really 
close to LRU
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Modification LRU
• NRU – not recently used

– Use a-bit and dirty bit d-bit
– Timer regularly clean a-bit and therefore it is possible 

to have page with d-bit=1 and a-bit=0.
– Select page in order (da): 00, 01, 10, 11

– Priority of d-bit enable to spare disk operation and time

• Ageing 

– a-bit is regularly saved and old-values are shifted

– Time window is limited by HW architecture

– If the history of access to page is 0,0,1,0,1, then it 
corresponds to number 5 (00101)

– The page with the smallest number well be removed
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Counter algorithms

• Reference counter
– Each frame has reference counter

– For „swap-in“ – the counter is set to 0 

– Each reference increments the counter

• Algorithm LFU (Least Frequently Used)
– replaces page with smallest count

• Algorithm MFU (Most Frequently Used)
– based on the argument that the page with 

the smallest count was probably just 
brought in and has yet to be used
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Processes and paging

• Global replacement – process selects a replacement frame 
from the set of all frames; one process can take a frame from 
another

• Local replacement – each process selects from only its own 
set of allocated frames

• Principles of frame allocation

– Fixed allocation 

– Process receives fixed number of frames (Can be fixed for each process or can 
depends on it’s virtual space size)

– Priority allocation

– Process with higher priority receives more frames to be able to run faster

– If there is page fault process with higher priority gets frame from process with 
lower priority



Fixed Allocation

• Equal allocation – For example, if there are 
100 frames and 5 processes, give each 
process 20 frames.

• Proportional allocation – Allocate according to 
the size of process

• Example:
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Dynamic Allocation

• Priority allocation

– Use a proportional allocation scheme 
using priorities rather than size

– If process Pi generates a page fault,

– select for replacement one of its frames

– select for replacement a frame from a process 
with lower priority number

• Working set

– Dynamically detect how many pages is 
used by each process



Thrashing
• If a process does not have “enough” pages, the page-fault rate is very 

high.  This leads to:

– low CPU utilization

– operating system thinks that it needs to increase the degree of multiprogramming

– another process can be added to the system

• Thrashing  a process is busy swapping pages in and out



Working-Set Model

• How many pages process need?

• Working set define set of pages that were used by last N instructions

• Detection of space locality in process

•   working-set window  a fixed number of page references 
Example:  10,000 instruction

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in 
time)

– if  too small will not encompass entire locality

– if  too large will encompass several localities

– if  =   will encompass entire program

• D =  WSSi  total demand frames 

• if D > m  Thrashing

• Policy if D > m, then suspend one of the processes



Working­set model



Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000

– Timer interrupts after every 5000 time units

– Keep in memory 2 bits for each page

– Whenever a timer interrupts copy and sets the values 
of all reference bits to 0

– If one of the bits in memory = 1  page in working 
set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 
time units
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Working set

• If sum of working sets  for all process Pi- 
WSi exceeds the whole capacity of 
physical memory it creates thrashing

• Simply protection before thrashing

– Whole one process is swapped out



Page Fault Frequency ­ PFF 

• PFF is a variable-space algorithm that 
uses a more ad hoc approach

• Attempt to equalize the fault rate among 
all processes, and to have a “tolerable” 
system-wide fault rate

– Monitor fault rate for each process

– If fault rate is above given threshold, give it 
more memory, so that it faults less

– If fault rate is bellow threshold, take away 
memory, so should fault more, allowing 
someone else to fault less
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Page size
• Big pages

– Small number of page faults

– Big fragmentation

– If page size is bigger
then process size, 
virtual space is not necessary 

• Small pages
– Big number of small pages 

– Page is more frequently in memory → low number of page faults
– Smaller pages means

– Smaller fragmentation but decrease the effectivness of disk operations

– The bigger page table and more complicated selection of victim for swap out
– Big page table 

– PT must be in memory, cannot be swaped out – PT occupying real memory

– Placing part of PT into virtual memory leads to more page faults (access to invalid 
page can create 2 page faults, first fault of page table and fault of page)
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Programming techniques and page faults
• Programming techniques have influence to page faults

double data[512][512];

– Suppose that double occupy 8 byts

– Each line of array has 4 KB and is stored in one page 4 KB

– It is good to know how the data are stored in virtual space

Approach 1:

for (j = 0; j <512; j++)
for (i = 0; i < 512; i+

+)
data[i][j] = 

i*j;
Can have

512 x 512 = 262 144
page faults 

Approach 2:

for (i = 0; i <512; i++)
for (j = 0; j < 512; j+

+)
data[i][j] = 

i*j;
Only 512 page faults
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Paging in Windows XP
• Uses demand paging with pre-paging clusters. Clustering brings in 

pages surrounding the faulting page.

• Processes are assigned working set minimum and working set 
maximum

• Working set minimum is the minimum number of pages the 
process is guaranteed to have in memory

• A process may be assigned as many pages up to its working set 
maximum

• When the amount of free memory in the system falls below a 
threshold, automatic working set trimming is performed to 
restore the amount of free memory

• Working set trimming removes pages from processes that have 
pages in excess of their working set minimum

• There can be thrashing
– Recommended minimal memory size – 128 MB

– Real minimal memory size – 384  MB
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