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What is a process?

Textbooks use the terms job and process almost hax
interchangeably stack
Process — a program in execution; process execution
must progress in sequential fashion l

A process includes:
® program counter
® stack 1

® data section. heap

Information associated with each process:

Process state data

Program counter
CPU reqisters

text

CPU scheduling information
Memory-management information

Accounting information

/O status information (“process environment”)
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C Program Forking Separate Process

int main()
{
Pid t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "ls", NULL);
}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);
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Process Creation lllustrated
Tree of processes

pageout
pid =2
inetd dtlogin

pid = 140 pid = 251
telnetdaemon X_session
pid = pld =294
Csh sdt_shel
pid = 7778 pid = 340

POSIX parent process -

pid = 7785

waiting for its child to &
finish

resumes -
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Process Termination

B Process executes last statement and asks the operating
system to delete it (exit)
® QOutput data from child to parent (via wait)
® Process’ resources are deallocated by operating system

B Parent may terminate execution of children processes
(abort)
® Child has exceeded allocated resources
® Task assigned to child is no longer required

® [f parent is exiting
» Some operating system do not allow children to continue if the
parent terminates — the problem of ‘zombie’

» All children terminated - cascading termination
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Process State

B As a process executes, it changes its state
® new: The process is being created
® running: Instructions are being executed
® waiting: The process is waiting for some event to occur
® ready: The process is waiting to be assigned to a CPU
® terminated: The process has finished execution

admitted interrupt terminated

scheduler dispatch

I/O or event completion M
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Context Switch

B When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process

B Context-switch time is overhead; the system does no
useful work while switching

B Time dependent on hardware support

® Hardware designers try to support routine context-switch
actions like saving/restoring all CPU registers by one pair of
machine instructions

AE4B330SS Lecture 4 / Page 8 2011



CPU Switch From Process to Process

process P, operating system process P,
interrupt or system call Context switch is
lexecuting i / l similar to handling an
T save state into PCB, Interrupt
ridie ] Context switch steps:
1.Save current
reload state from PCB, y
/- i process to PCB
2.Decide which
-idle interrupt or system call executingl process to run
l ~——_ 4 3.Reload of new
T rocess from PCB
save state into PCB; ) P
~idle | GContext switch should
be fast, because it is
) reload state from PCB, J overhead.
Executing | _\
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Process Control Block (PCB)

Information associated with each process
B Process state

B Program counter
B CPU reqisters

B CPU scheduling information program counter
B Memory-management information
B Accounting information

B |/O status information (“process
environment”)

PIEGESS Sidie

process number

registers

memory limits

list of open files
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Simplified Model of Process Scheduling

: ready queue CEU ”
I/O queue <« |/Orequest [¢—

time slice »

expired

child fork a
@7 child '
interrupt wait for an
occurs interrupt
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Ready Queue and Various I/0O Device Queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header PCB, PCB,
head » >
= X registers registers
head +——=
tail —
head T——=
tail i PCB, PCB,., PCBg

Y

head

AN

tail

PCB.

head

tail
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Schedulers

B Long-term scheduler (orjob scheduler) — selects which
processes should be brought into the ready queue

® Long-term scheduler is invoked very infrequently (seconds,
minutes) = (may be slow)

® The long-term scheduler controls the degree of
multiprogramming
B Mid-term scheduler (or tactic scheduler) — selects which
process swap out to free memory or swap in if the memory is free
® Partially belongs to memory manager

B Short-term scheduler (or CPU scheduler) — selects
which process should be executed next and allocates

= (must be fast)
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Process states with swapping

““‘--lllll-llllll......
o* *
o” "‘
N Long-term
] - |
., scheduling »
% \ ‘0‘
‘*., Start “Start _,.*"° Short-term
S ALEETTTI XL Ll scheduling
. Swap out — process
LT RN Needs more memory
guEE QN

Ready
Swapped out

Terminated

Waiting
Swapped out

Mid-term scheduling
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Basic Concepts

B Maximum CPU utilization
obtained with multiprogramming

B CPU-I/O Burst Cycle — Process
execution consists of a cycle of
CPU execution and I/0O wait

B CPU burst distribution

160 |-
140 |-

120 |-

]

40 |

o
(=

frequency

20 |

| |
0 8 16 24 32 40
burst duration (milliseconds)
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load store
add store CPU burs
read from file

wait for I/O [/O burst
store increment
index CPU burs
write to file

wait for I/0 } I/O burst
load store
add store CPU burs
read from file

wait for I/O I/O burst
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CPU Scheduler

B Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of
them

B CPU scheduling decisions may take place when a
Process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

B Scheduling under 1 and 4 is nonpreemptive
B 2 and 3 scheduling are preemptive
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Dispatcher

B Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
Involves:

® switching context

® switching to user mode

® jumping to the proper location in the user program to restart that
program

B Dispatch latency — time it takes for the dispatcher to stop
one process and start another running — overhead
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Scheduling Criteria & Optimization

B CPU utilization — keep the CPU as busy as possible
® Maximize CPU utilization

B Throughput - # of processes that complete their execution per
time unit

® Maximize throughput

B Turnaround time — amount of time to execute a particular
process

® Minimize turnaround time

B Waiting time — amount of time a process has been waiting in
the ready queue

® Minimize waiting time
B Response time — amount of time it takes from when a request

was submitted until the first response is produced, not output
(for time-sharing and interactive environment )

® Minimize response time
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First-Come, First-Served (FCFS) Scheduling

B Most simple nonpreemptive scheduling.
Process Burst Time

P, 24
P, 3
P, 3
B Suppose that the processes arrive in the order: P,, P,, P,
The ——=——— . ..
P, P, P,
0 24 27 30

B Waiting time for P, =0; P, =24; P=27
B Average waiting time: (0 + 24 + 27)/3 =17
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B The Gantt chart for the schedule is:

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P,, P,, P,

P,

P,

0

3

6

B Waiting time for P,=6,P,=0.P,=3

B Average waiting time: (6 + 0 + 3)/3 =3

B Much better than previous case

B Convoy effect short process behind long process
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Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time (SRT)

B SJF is optimal — gives minimum average waiting time
for a given set of processes
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Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

B SJF (non-preemptive)

P, P, P, P,

B Average waitingtime=(0+6+ 3+ 7)/4 =4
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Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
H SJF T{Leemptive)
P, P, |[P, | P, P, P,
— —
0 ) 4 5 7 11 16

B Average waitingtime=(9+1+ 0 +2)/4 =3
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Determining Length of Next CPU Burst

B Can only estimate the length

B Can be done by using the length of previous CPU
bursts, using exponential averaging

1. t =actuallenght of n” CPU burst

2. t_, =predicted value for the next CPU burst
3. 2,05a<1

4. Define: 7,,,=Qt, +(1—06)Tn. 12
T, 10
8 L
t,‘ 6
-.—/
4 -
2 |
time —»
ICPU burst (1) 6 4 6 4 13 13 13
"guess" (1) 10 8 6 6 5 9 11 12
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Examples of Exponential Averaging

B =0

®T =1

® Recent history does not count
o =1

® 1. =0t

® Only the actual last CPU burst counts
B |[f we expand the formula, we get:
T.=o0t+(1 -o)at, + ...
+(1-a)ot +...
+(1 - ),

B Since both o and (1 - ) are less than or equal to 1,
each successive term has less weight than its
predecessor
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Priority Scheduling

B A priority number (integer) is associated with each
process

B The CPU is allocated to the process with the highest
priority (smallest integer = highest priority)
® Preemptive
® Nonpreemptive

B SJF is a priority scheduling where priority is the
predicted next CPU burst time

B Problem = Starvation — low priority processes may
never execute (When MIT shut down in 1973 their IBM
7094 - the biggest computer - they found process with
low priority waiting from 1967)

B Solution: Aging — as time progresses increase the
priority of the process
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Round Robin (RR)

B Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

B |f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time
In chunks of at most g time units at once. No process
waits more than (n-1)g time units.

B Performance
® glarge = FCFS

® gsmall = g must be large with respect to context switch,
otherwise overhead is too high
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Example of RR with Time Quantum = 20

Process Burst Time
P, 953
P, 17
P, 68
P, 24

B The Gantt chart is:

P,|P, | P, | P, |P [P, |P | P |P,]|P,

0 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but
better response
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Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

B Each queue has its own scheduling algorithm

® foreground — RR
® background — FCFS

B Scheduling must be done between the queues
® Fixed priority scheduling; (i.e., serve all from foreground then
from background). Danger of starvation.
® Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to

foreground in RR
® 20% to background in FCFS
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Multilevel Queue Scheduling

highest priority

m— —
—— —
— interactive editing processes

— batch processes

m— student processes

lowest priority
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Multilevel Feedback Queue

B A process can move between the various queues; aging
can be treated this way

B Multilevel-feedback-queue scheduler defined by the
following parameters:
® number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service
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Example of Multilevel Feedback Queue

B Three queues:
® Q@ — RR with time quantum 8 milliseconds

® Q - RRtime quantum 16 milliseconds
® Q-FCFS
B Scheduling

® A new job enters queue Q,. When it gains CPU, job receives 8
milliseconds. If it exhausts 8 milliseconds, job is moved to queue Q.

® At Q the job receives 16 additional milliseconds. If it still does not
complete, it is preempted and moved to queue

> quantum = 8

il
> quantum = 16

—>{ FCFS :
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Multiple-Processor Scheduling

B CPU scheduling more complex when multiple CPUs are
available
® Multiple-Processor Scheduling has to decide not only which
process to execute but also where (i.e. on which CPU) to execute it
B Homogeneous processors within a multiprocessor

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

B Symmetric multiprocessing (SMP)— each processor is
self-scheduling, all processes in common ready queue, or
each has its own private queue of ready processes

B Processor affinity — process has affinity for the processor
on which it has been recently running
® Reason: Some data might be still in cache

® Soft affinity is usually used — the process can migrate among
CPUs
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Windows XP Priorities

Priority classes (assigned to each process)

;Ieal- high above o below idI.e .
ime normal normal priority
time-critical i 15 5 1 15 5
highest 26 15 12 10 8 6
above normal 25 14 11 9 T 5
normal 24 13 10 8 6 A
below normal 23 | 9 i = 3
lowest 22 11 8 6 - 2
idle 16 1 1 1 1 1

tdeR
mh w

® Fgefative priority “normal” is a base priority for each class — starting
p‘ﬁ@rlty of the thread

® \Aihen the thread exhausts its quantum, the priority is lowered

® Wh’én the thread comes from a wait-state, the priority is increased
depending on the reason for waiting

» A thread released from waiting for keyboard gets more boost than a thread
having been waiting for disk /O
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Linux Scheduling

B Two algorithms: time-sharing and real-time

B Time-sharing
® Prioritized credit-based — process with most credits is
scheduled next
® Credit subtracted when timer interrupt occurs
® When credit = 0, another process chosen

® When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history

B Real-time
® Soft real-time

® POSIX.1b compliant — two classes

» FCFS and RR
> Highest priority process always runs first
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Real-Time Systems

A real-time system requires that results be not only correct
but in time
® produced within a specified deadline period

An embedded system is a computing device that is part of
a larger system
® automobile, airliner, dishwasher, ...

A safety-critical system is a real-time system with
catastrophic results in case of failure
® e.g., airplanes, racket, railway traffic control system

A hard real-time system guarantees that real-time tasks
be completed within their required deadlines

® mainly single-purpose systems
A soft real-time system provides priority of real-time tasks
over non real-time tasks

® a “standard” computing system with a real-time part that takes
precedence
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B Periodic processes require the CPU at specified

B pis the duration of the period

B dis the deadline by when the process must be
serviced (must finish within d) — often equal to p

Real-Time CPU Scheduling

intervals (periods)

M {is the processing time

AE4B330SS

Period

Period,

Lecture 4 / Page 37

Period,

2011



Scheduling of two and more tasks

Nt
Can be scheduled if = Z—’ <1 (N =number of processes)
r — CPU utilization i1 P

Process P,: service time = 20, period = 50, deadline = 50
Process P,: service time = 35, period = 100, deadline = 100

_20+35
50 100

r =(0.75<1 = schedulable

When P, has a higher priority than P,, a failure occurs:
Deadlines P, Py P

’ !

| I32‘| | | I:)1| | | | | | | |
10 10 20 30 40 50 60 70 80 90 100 110 120
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Rate Monotonic Scheduling (RMS)

B A process priority is assigned based on the inverse of its period
B Shorter periods = higher priority;
B Longer periods = lower priority

B P, is assigned a higher priority than P,.

Deadlines P, P, P P P P
FT1 | P2 | FT1 P2 | | I:)|1 | P> | FT1 P> | | |
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200

Process P,: service time = 20, period = 50, deadline = 50
Process P,: service time = 35, period = 100, deadline = 100

works well
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Missed Deadlines with RMS

failure
Deadlines P4 P P, P, P
' Voo Vo

|F)1 FTE | | | | | | | |

|
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160}

Process P,: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80

25 35
r= —=0,9375 <1=schedulable
50 80 N N(¥/2 —1)
: 2 0,828427
RMS is guaranteed r— XN:i N[Y2 —1);
to work if ~ p 3 0,779763
N = b ¢ 4 0,756828
— DS OTPIOEESES lim (Y2 -1)= 12~ 0.693147 5 | 0743491
sufficient condition o 10 0,717734
20 0,705298
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Earliest Deadline First (EDF) Scheduling

B Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority.

‘Deadlines P, P P, P, P,
| ! ! U

|P1 | | |P2 |P1 | |P2 |P1 | P-? | | |

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160}

Process P,: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80
Works well even for the case when RMS failed
PREEMPTION may occur
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RMS and EDF Comparison

B RMS:

® Deeply elaborated algorithm

® Deadline guaranteed if the condition I < N(%—l)
IS satisfied (sufficient condition)

® Used in many RT OS

B EDF:

® Ferc;OdiC processes deadlines kept even at 100% CPU
oa |

® Consequences of the overload are unknown and
unpredictable

® When the deadlines and periods are not equal, the
behaviour is unknown
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End of Lecture 3
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