Lecture 3: CPU Scheduling

AE4B330SS

Contents

B What is process

B Context Switch

B Processes hierarchy

B Process creation and termination
B CPU Scheduling

B Scheduling Criteria & Optimization
B Basic Scheduling Approaches

B Priority Scheduling

B Queuing and Queues Organization
B Scheduling Examples in Real OS
B Deadline Real-Time CPU Scheduling

Lecture 4 / Page 2

2011

What is a process?

Textbooks use the terms job and process almost hax
interchangeably stack
Process — a program in execution; process execution
must progress in sequential fashion l

A process includes:
® program counter
® stack 1

® data section. heap

Information associated with each process:

Process state data

Program counter
CPU reqisters

text

CPU scheduling information
Memory-management information

Accounting information

/O status information (“process environment”)

AE4B330SS Lecture 4 / Page 3 2011

C Program Forking Separate Process

int main()
{
Pid t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "ls", NULL);
}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

AE4B330SS Lecture 4 / Page 4 2011

Process Creation lllustrated
Tree of processes

pageout
pid =2
inetd dtlogin

pid = 140 pid = 251
telnetdaemon X_session
pid = pld =294
Csh sdt_shel
pid = 7778 pid = 340

POSIX parent process -

pid = 7785

waiting for its child to &
finish

resumes -

AE4B330SS Lecture 4 / Page 5 2011

Process Termination

B Process executes last statement and asks the operating
system to delete it (exit)
® QOutput data from child to parent (via wait)
® Process’ resources are deallocated by operating system

B Parent may terminate execution of children processes
(abort)
® Child has exceeded allocated resources
® Task assigned to child is no longer required

® [f parent is exiting
» Some operating system do not allow children to continue if the
parent terminates — the problem of ‘zombie’

» All children terminated - cascading termination

AE4B330SS Lecture 4 / Page 6 2011

Process State

B As a process executes, it changes its state
® new: The process is being created
® running: Instructions are being executed
® waiting: The process is waiting for some event to occur
® ready: The process is waiting to be assigned to a CPU
® terminated: The process has finished execution

admitted interrupt terminated

scheduler dispatch

I/O or event completion M

AE4B330SS Lecture 4/ Page 7

I/O or event wait

2011

Context Switch

B When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process

B Context-switch time is overhead; the system does no
useful work while switching

B Time dependent on hardware support

® Hardware designers try to support routine context-switch
actions like saving/restoring all CPU registers by one pair of
machine instructions

AE4B330SS Lecture 4 / Page 8 2011

CPU Switch From Process to Process

process P, operating system process P,
interrupt or system call Context switch is
lexecuting i / l similar to handling an
T save state into PCB, Interrupt
ridie] Context switch steps:
1.Save current
reload state from PCB, y
/- i process to PCB
2.Decide which
-idle interrupt or system call executingl process to run
l ~——_ 4 3.Reload of new
T rocess from PCB
save state into PCB;) P
~idle | GContext switch should
be fast, because it is
) reload state from PCB, J overhead.
Executing | _\

AE4B330SS Lecture 4 / Page 9 2011

Process Control Block (PCB)

Information associated with each process
B Process state

B Program counter
B CPU reqisters

B CPU scheduling information program counter
B Memory-management information
B Accounting information

B |/O status information (“process
environment”)

PIEGESS Sidie

process number

registers

memory limits

list of open files

AE4B330SS Lecture 4 / Page 10 2011

Simplified Model of Process Scheduling

: ready queue CEU ”
I/O queue <« |/Orequest [¢—

time slice »

expired

child fork a
@7 child '
interrupt wait for an
occurs interrupt

AE4B330SS Lecture 4 / Page 11 2011

AE4B330SS

Ready Queue and Various I/0O Device Queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header PCB, PCB,
head » >
= X registers registers
head +——=
tail —
head T——=
tail i PCB, PCB,., PCBg

Y

head

AN

tail

PCB.

head

tail

Lecture 4 / Page 12

2011

Schedulers

B Long-term scheduler (orjob scheduler) — selects which
processes should be brought into the ready queue

® Long-term scheduler is invoked very infrequently (seconds,
minutes) = (may be slow)

® The long-term scheduler controls the degree of
multiprogramming
B Mid-term scheduler (or tactic scheduler) — selects which
process swap out to free memory or swap in if the memory is free
® Partially belongs to memory manager

B Short-term scheduler (or CPU scheduler) — selects
which process should be executed next and allocates

= (must be fast)

AE4B330SS Lecture 4 / Page 13 2011

Process states with swapping

““‘--lllll-llllll......
o* *
o” "‘
N Long-term
] - |
., scheduling »
% \ ‘0‘
‘*., Start “Start _,.*"° Short-term
S ALEETTTI XL Ll scheduling
. Swap out — process
LT RN Needs more memory
guEE QN

Ready
Swapped out

Terminated

Waiting
Swapped out

Mid-term scheduling

AE4B330SS Lecture 4 / Page 14 2011

Basic Concepts

B Maximum CPU utilization
obtained with multiprogramming

B CPU-I/O Burst Cycle — Process
execution consists of a cycle of
CPU execution and I/0O wait

B CPU burst distribution

160 |-
140 |-

120 |-

]

40 |

o
(=

frequency

20 |

| |
0 8 16 24 32 40
burst duration (milliseconds)

AE4B330SS Lecture 4 / Page 15

load store
add store CPU burs
read from file

wait for I/O [/O burst
store increment
index CPU burs
write to file

wait for I/0 } I/O burst
load store
add store CPU burs
read from file

wait for I/O I/O burst

2011

CPU Scheduler

B Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of
them

B CPU scheduling decisions may take place when a
Process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

B Scheduling under 1 and 4 is nonpreemptive
B 2 and 3 scheduling are preemptive

AE4B330SS Lecture 4 / Page 16 2011

Dispatcher

B Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
Involves:

® switching context

® switching to user mode

® jumping to the proper location in the user program to restart that
program

B Dispatch latency — time it takes for the dispatcher to stop
one process and start another running — overhead

AE4B330SS Lecture 4 / Page 17 2011

AE4B330SS

Scheduling Criteria & Optimization

B CPU utilization — keep the CPU as busy as possible
® Maximize CPU utilization

B Throughput - # of processes that complete their execution per
time unit

® Maximize throughput

B Turnaround time — amount of time to execute a particular
process

® Minimize turnaround time

B Waiting time — amount of time a process has been waiting in
the ready queue

® Minimize waiting time
B Response time — amount of time it takes from when a request

was submitted until the first response is produced, not output
(for time-sharing and interactive environment)

® Minimize response time

Lecture 4 / Page 18 2011

First-Come, First-Served (FCFS) Scheduling

B Most simple nonpreemptive scheduling.
Process Burst Time

P, 24
P, 3
P, 3
B Suppose that the processes arrive in the order: P,, P,, P,
The ——=——— . ..
P, P, P,
0 24 27 30

B Waiting time for P, =0; P, =24; P=27
B Average waiting time: (0 + 24 + 27)/3 =17

AE4B330SS Lecture 4 / Page 19 2011

AE4B330SS

B The Gantt chart for the schedule is:

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P,, P,, P,

P,

P,

0

3

6

B Waiting time for P,=6,P,=0.P,=3

B Average waiting time: (6 + 0 + 3)/3 =3

B Much better than previous case

B Convoy effect short process behind long process

Lecture 4 / Page 20

30

2011

Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time (SRT)

B SJF is optimal — gives minimum average waiting time
for a given set of processes

AE4B330SS Lecture 4 / Page 21 2011

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

B SJF (non-preemptive)

P, P, P, P,

B Average waitingtime=(0+6+ 3+ 7)/4 =4

AE4B330SS Lecture 4 / Page 22 2011

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
H SJF T{Leemptive)
P, P, |[P, | P, P, P,
— —
0) 4 5 7 11 16

B Average waitingtime=(9+1+ 0 +2)/4 =3

AE4B330SS Lecture 4 / Page 23

2011

Determining Length of Next CPU Burst

B Can only estimate the length

B Can be done by using the length of previous CPU
bursts, using exponential averaging

1. t =actuallenght of n” CPU burst

2. t_, =predicted value for the next CPU burst
3. 2,05a<1

4. Define: 7,,,=Qt, +(1—06)Tn. 12
T, 10
8 L
t,‘ 6
-.—/
4 -
2 |
time —»
ICPU burst (1) 6 4 6 4 13 13 13
"guess" (1) 10 8 6 6 5 9 11 12

AE4B330SS Lecture 4 / Page 24 2011

Examples of Exponential Averaging

B =0

®T =1

® Recent history does not count
o =1

® 1. =0t

® Only the actual last CPU burst counts
B |[f we expand the formula, we get:
T.=o0t+(1 -o)at, + ...
+(1-a)ot +...
+(1 -),

B Since both o and (1 -) are less than or equal to 1,
each successive term has less weight than its
predecessor

AE4B330SS Lecture 4 / Page 25 2011

Priority Scheduling

B A priority number (integer) is associated with each
process

B The CPU is allocated to the process with the highest
priority (smallest integer = highest priority)
® Preemptive
® Nonpreemptive

B SJF is a priority scheduling where priority is the
predicted next CPU burst time

B Problem = Starvation — low priority processes may
never execute (When MIT shut down in 1973 their IBM
7094 - the biggest computer - they found process with
low priority waiting from 1967)

B Solution: Aging — as time progresses increase the
priority of the process

AE4B330SS Lecture 4 / Page 26 2011

Round Robin (RR)

B Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

B |f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time
In chunks of at most g time units at once. No process
waits more than (n-1)g time units.

B Performance
® glarge = FCFS

® gsmall = g must be large with respect to context switch,
otherwise overhead is too high

AE4B330SS Lecture 4 / Page 27 2011

Example of RR with Time Quantum = 20

Process Burst Time
P, 953
P, 17
P, 68
P, 24

B The Gantt chart is:

P,|P, | P, | P, |P [P, |P | P |P,]|P,

0 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but
better response

AE4B330SS Lecture 4 / Page 28 2011

Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

B Each queue has its own scheduling algorithm

® foreground — RR
® background — FCFS

B Scheduling must be done between the queues
® Fixed priority scheduling; (i.e., serve all from foreground then
from background). Danger of starvation.
® Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to

foreground in RR
® 20% to background in FCFS

AE4B330SS Lecture 4 / Page 29 2011

Multilevel Queue Scheduling

highest priority

m— —
—— —
— interactive editing processes

— batch processes

m— student processes

lowest priority

AE4B330SS Lecture 4 / Page 30 2011

Multilevel Feedback Queue

B A process can move between the various queues; aging
can be treated this way

B Multilevel-feedback-queue scheduler defined by the
following parameters:
® number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service

AE4B330SS Lecture 4 / Page 31 2011

Example of Multilevel Feedback Queue

B Three queues:
® Q@ — RR with time quantum 8 milliseconds

® Q - RRtime quantum 16 milliseconds
® Q-FCFS
B Scheduling

® A new job enters queue Q,. When it gains CPU, job receives 8
milliseconds. If it exhausts 8 milliseconds, job is moved to queue Q.

® At Q the job receives 16 additional milliseconds. If it still does not
complete, it is preempted and moved to queue

> quantum = 8

il
> quantum = 16

—>{ FCFS :

AE4B330SS Lecture 4 / Page 32

2011

Multiple-Processor Scheduling

B CPU scheduling more complex when multiple CPUs are
available
® Multiple-Processor Scheduling has to decide not only which
process to execute but also where (i.e. on which CPU) to execute it
B Homogeneous processors within a multiprocessor

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

B Symmetric multiprocessing (SMP)— each processor is
self-scheduling, all processes in common ready queue, or
each has its own private queue of ready processes

B Processor affinity — process has affinity for the processor
on which it has been recently running
® Reason: Some data might be still in cache

® Soft affinity is usually used — the process can migrate among
CPUs

AE4B330SS Lecture 4 / Page 33 2011

Windows XP Priorities

Priority classes (assigned to each process)

;Ieal- high above o below idI.e .
ime normal normal priority
time-critical i 15 5 1 15 5
highest 26 15 12 10 8 6
above normal 25 14 11 9 T 5
normal 24 13 10 8 6 A
below normal 23 | 9 i = 3
lowest 22 11 8 6 - 2
idle 16 1 1 1 1 1

tdeR
mh w

® Fgefative priority “normal” is a base priority for each class — starting
p‘ﬁ@rlty of the thread

® \Aihen the thread exhausts its quantum, the priority is lowered

® Wh’én the thread comes from a wait-state, the priority is increased
depending on the reason for waiting

» A thread released from waiting for keyboard gets more boost than a thread
having been waiting for disk /O

AE4B330SS Lecture 4 / Page 34 2011

Linux Scheduling

B Two algorithms: time-sharing and real-time

B Time-sharing
® Prioritized credit-based — process with most credits is
scheduled next
® Credit subtracted when timer interrupt occurs
® When credit = 0, another process chosen

® When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history

B Real-time
® Soft real-time

® POSIX.1b compliant — two classes

» FCFS and RR
> Highest priority process always runs first

AE4B330SS Lecture 4 / Page 35 2011

AE4B330SS

Real-Time Systems

A real-time system requires that results be not only correct
but in time
® produced within a specified deadline period

An embedded system is a computing device that is part of
a larger system
® automobile, airliner, dishwasher, ...

A safety-critical system is a real-time system with
catastrophic results in case of failure
® e.g., airplanes, racket, railway traffic control system

A hard real-time system guarantees that real-time tasks
be completed within their required deadlines

® mainly single-purpose systems
A soft real-time system provides priority of real-time tasks
over non real-time tasks

® a “standard” computing system with a real-time part that takes
precedence

Lecture 4 / Page 36 2011

B Periodic processes require the CPU at specified

B pis the duration of the period

B dis the deadline by when the process must be
serviced (must finish within d) — often equal to p

Real-Time CPU Scheduling

intervals (periods)

M {is the processing time

AE4B330SS

Period

Period,

Lecture 4 / Page 37

Period,

2011

Scheduling of two and more tasks

Nt
Can be scheduled if = Z—’ <1 (N =number of processes)
r — CPU utilization i1 P

Process P,: service time = 20, period = 50, deadline = 50
Process P,: service time = 35, period = 100, deadline = 100

_20+35
50 100

r =(0.75<1 = schedulable

When P, has a higher priority than P,, a failure occurs:
Deadlines P, Py P

’ !

| I32‘| | | I:)1| | | | | | | |
10 10 20 30 40 50 60 70 80 90 100 110 120

AE4B330SS Lecture 4 / Page 38 2011

Rate Monotonic Scheduling (RMS)

B A process priority is assigned based on the inverse of its period
B Shorter periods = higher priority;
B Longer periods = lower priority

B P, is assigned a higher priority than P,.

Deadlines P, P, P P P P
FT1 | P2 | FT1 P2 | | I:)|1 | P> | FT1 P> | | |
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200

Process P,: service time = 20, period = 50, deadline = 50
Process P,: service time = 35, period = 100, deadline = 100

works well

AE4B330SS Lecture 4 / Page 39 2011

Missed Deadlines with RMS

failure
Deadlines P4 P P, P, P
' Voo Vo

|F)1 FTE | | | | | | | |

|
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160}

Process P,: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80

25 35
r= —=0,9375 <1=schedulable
50 80 N N(¥/2 —1)
: 2 0,828427
RMS is guaranteed r— XN:i N[Y2 —1);
to work if ~ p 3 0,779763
N = b ¢ 4 0,756828
— DS OTPIOEESES lim (Y2 -1)= 12~ 0.693147 5 | 0743491
sufficient condition o 10 0,717734
20 0,705298

AE4B330SS Lecture 4 / Page 40 2011

Earliest Deadline First (EDF) Scheduling

B Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority.

‘Deadlines P, P P, P, P,
| ! ! U

|P1 | | |P2 |P1 | |P2 |P1 | P-? | | |

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160}

Process P,: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80
Works well even for the case when RMS failed
PREEMPTION may occur

AE4B330SS Lecture 4 / Page 41 2011

RMS and EDF Comparison

B RMS:

® Deeply elaborated algorithm

® Deadline guaranteed if the condition I < N(%—l)
IS satisfied (sufficient condition)

® Used in many RT OS

B EDF:

® Ferc;OdiC processes deadlines kept even at 100% CPU
oa |

® Consequences of the overload are unknown and
unpredictable

® When the deadlines and periods are not equal, the
behaviour is unknown

AE4B330SS Lecture 4 / Page 42 2011

End of Lecture 3
GIBBDDIGIBBDDIG IS IIG IS DI

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43

